Total No. of Printed Pages: 3

SUBJECT CODE NO:- B-2040 FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. F. Y. (Sem-I)

Examination November/December - 2022 Mathematics MAT - 102 (Differential Equations)

[Time: 1:30 Hours] [Max. Marks:50]

"Please check whether you have got the right question paper."

N.B.

- 1) Attempt all questions.
- 2) Figures to the right indicates full marks.
- Q.1 A) Attempt any one.

08

- a) Explain the method of Solving differential equation $\frac{dy}{dx} + Py = Q$, where P, Q are functions of x or constants.
- b) Explain the method of solving differential equation

$$\frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + P_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + P_n y = X,$$

Where P_1, P_2, \dots, P_n are constants and X is a function of x.

B) Attempt any one.

07

c) Solve the simultaneous equations

$$\frac{dx}{dt} - 7x + y = 0$$
; $\frac{dy}{dt} - 2x - 5y = 0$

d) Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 2e^{2x}$$

Q.2 A) Attempt any one.

08

a) Explain the method of solving the differential equation

$$x^{n}\frac{d^{n}y}{dx^{n}} + P_{1}x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + P_{n-1}x\frac{dy}{dx} + P_{n}y = X,$$

Where $P_1, P_2, P_3, \dots, P_n$ are constants and X is a function of x.

b) Solve
$$x^2 \frac{d^2y}{dx^2} + 7x \cdot \frac{dy}{dx} + 5y = x^5$$

B) Attempt any one.

07

c) Solve
$$\frac{d^2y}{dx^2} - 4y = 2 \cdot \sin\left(\frac{1}{2} \cdot x\right)$$

d) Solve
$$(5 + 2x) \frac{d^2y}{dx^2} - 6(5 + 2x) \frac{dy}{dx} + 8y = 0$$

Q.3 A) Attempt any one.

- a) Explain the method of solving equation $\frac{d^n y}{dx^n} = f(x)$
- b) Derive the Partial differential equation by the elimination of the arbitrary constants from the equation $\phi(x, y, z, a, b) = 0$.
- B) Attempt any one.

- c) Solve $\frac{dx}{mz-ny} = \frac{dy}{nx-lz} = \frac{dz}{ly-mx}$
- d) Form a Partial differential equation by eliminating the arbitrary function from $z=F(x^2+y^2). \label{eq:z}$
- Q.4 Choose correct alternative.

- i) The integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$ is ______
 - (a) $e^{\int Pdx}$
 - (b) $e^{-\int Pdx}$
 - (c) e^x
 - (d) e^{Px}
- ii) The general solution of the differential equation $\frac{d^2y}{dx^2} a^2y = 0$ is _____.

(a)
$$y = (c_1 + c_2 x)e^{ax}$$

(b)
$$y = (c_1 + c_2 x)e^{-ax}$$

(c)
$$y = c_1 e^{ax} + c_2 e^{-ax}$$

- (d) None of these
- iii) The particular integral of the differential equation $\frac{d^2y}{dx^2} y = 2 + 5x$ is _____.
 - (a) 2 + 5x
 - (b) -2 5x
 - (c) -2 + 5x
 - (d) 2 5x

- iv) The Solution of the Simultaneous equation $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ is _____.
 - (a) $x = c_1 y$ and $x = c_2 z$
 - (b) $x = c_1 y^2$ and $x = c_2 z^2$
 - (c) $x = c_1 x^2$ and $x = c_2 z^2$
 - (d) None of the above
- v) The Partial differential equation corresponding to the equation z = (x + a)(y + b) is
 - (a) $z = p^2 q^2$
 - (b) z = p + q
 - (c) z = p c
 - (d) z = pq