Total No. of Printed Pages: 3

SUBJECT CODE NO: - CB-2339 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. F.Y. (Sem-I)

Examination December/January-2022-23 Mathematics - I MAT-011 Geometry

[Time: 1:30 Hours]

[Max. Marks: 40]

Please check whether you have got the right question paper.

N. B

- 1) Attempt all questions.
- 2) Figures to the sight indicate full marks.

Q1 A) Attempt any one:

05

- a) Prove that every equation of the first degree in x, y, z represents a plane.
- b) Find the perpendicular distance of the point $p(x_1, y_1, z_1)$ from the plane lx + my + nz = p
- B) Attempt any one:

05

- c) Find the equation of the plane passing through the intersection of the planes x + y + z = 6 and 2x + 3y + 4x + 5 = 0 and the point (1, 1, 1).
- d) Show that the distance between the Parallel planes 2x 2y + x + 3 = 0 and 4x 4y + 2x + 5 = 0 is $\frac{1}{6}$

Q2 A) Attempt any one:

05

a) Find the angle between the line

$$\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$$

and the plane

$$ax + by + cz + d = 0.$$

b) Find the magnitude and the equations of the line of shortest distance between the straight lines?

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}$$
$$\frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$$

B) Attempt any one:

c) Find the co-ordinates of the point of intersection of the line with the plane $\frac{x+1}{1} = \frac{y+3}{3} = \frac{z-2}{-2}$

$$\frac{x+1}{1} = \frac{y+3}{3} = \frac{z-2}{-2}$$

With the plane

$$3x + 4y + 52 = 5$$
.

d) Find the equation of the plane containing the line

$$\frac{x+2}{2} = \frac{y+3}{3} = \frac{z-4}{-2}$$

and the point (0, 6, 0).

Q3 A) Attempt any one:

- a) Prove that a plane section of a sphere is a circle.
- b) Find the equation of the right circular cone whose vertex is the point (α, β, γ) and whose axis is the line

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$

and semi-vertical angle θ .

B) Attempt any one:

05

c) Find the radius and centre of the sphere $x^2 + y^2 + z^2 - 2x = 4y - 6z = 2$

$$x^2 + y^2 + z^2 - 2x = 4y - 6z = 2$$

d) Find the equation of the radius 2 whose axis passes through the point (1, 2, 3)and has direction cosines proportional to (2,-3, 6).

Choose the correct alternatives:

10

- The intercepts of the plane 2x-3y+4z=12 on the co-ordinates axes are ----
 - a) 2, -3, 4
- b) 6, -4, -3
- c) 3, -2, 1
- If the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is parallel to the plane ax = by + cz + d = 0,
 - a) al + bm + cn = 0
- b) am + bn + cl = 0
- c) an = bl + cm = 0
- d) $l^2 + m^2 + n^2 = 0$

- The direction cosines of the straight line $\frac{x+1}{2} = \frac{y-3}{1}$ a) 2, 1, -2 b) $\frac{2}{3}$, $\frac{1}{3}$, $\frac{-2}{3}$ c) $\frac{2}{6}$, $\frac{1}{6}$, $\frac{-2}{6}$ 3)

- d) 2, 2, -1
- The two equations $x^2 + y^2 + z^2 + 24x + 2vy + 2wz + d = 0$ and lx + my + 2vy + 2wz + d = 04) nz = p taken together represents a ----
 - a) Sphere
- b) Plane
- c) Pair of lines
- d) Circle
- If the vertex of the cone is at origin and the axis is z-axis then equation of cone 5) with semi-vertical angle θ is ----
 - a) $x^2 + y^2 = z^2 tan^2 \theta$
- b) $y^2 + z^2 = x^2 tan^2 \theta$
- b) $(y^2 + z^2) \tan^2 \theta = x^2$
- c) $(x^2 + y^2) \tan^2 \theta = z^2$