SUBJECT CODE NO: - B-2102 FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. S.Y. (Sem-III)

Examination November/December-2022 Computer Science Code -CS08 Data Structures

[Time: 1:30 Hour N.B			"Please check whether you have got the right question paper"				[Max. Marks:50]	
			1) All questions are co 2) Illustrate with suital					
Q.1	a)	What is dat	a structure? Explain the	he data struc	cture opera	tion.		10
	b)	Write an al	gorithm to implement	the bubble	sort metho	d.		10
			The Court		OR			
	a)	Explain the	insertion and deletion	n of linked l	est with su	itable example		10
	b)	Explain the	representation of two	-dimension	al arrays ir	memory.		10
								F. W. Store
Q.2	a)	What is que	eues? Explain types of	queues.				10
	b)	b) Explain the recursion with suitable example.						
					OR			
	Write short note on following (Any four)						× (2)	20
	a)	Binary sear	ch					
	b)	Priority que	eue ,					
29/22	c)	Underflow	condition				8	
	d)	Array trave	rsal		£1,7			
	e)	Postfix ope	ration					
	f)	Quick short						
016			E. Chio,					
Q.3	Μι	ıltiple choice	e questions:	34				10
	1)	Which of th	ne data structure can't	store the no	on-homoge	neous data eler	nents	
		(a) Arrays	(b) Records	(c) P	ointers	(d) None		
	2)	The time fa	ctor when determinin	g the efficie	ency of algo	orithm is meas	ured by	
		(a) Country	microseconds	(b)	Country the	e no of key ope	eration	
		(c) Country	y to no of statements	(d) (Country the	e kilobyte of al	gorithm	

	B-2102
2)	
3)	To represent hierarchical relationship between elements which data structure is suitable
	(a) Deque (b) Priority (c) Trees (d) All of above
4)	Linked list are best suitable
	(a) For relatively permanent collection of data
	(b) For the size and data structure are constantly changing
	(c) For both of above situation
	(d) For none of above situation
5)	The memory address of the first element of an array is called
	(a) Floor address (b) Foundation address
	(c) First address (d) Base address
6)	PUSH() and POP() functions are found in
	(a) Queues (b) List (c) Stacks (d) Trees
7)	A data structure where elements can be added or removed at either end but not in the middle
	(a) Linked list (b) Stacks (c) Queues (d) Deque
8)	What data structure you should use for dictionary searching and it should be capable of doing
	spell check also?
	(a) Array (b) Hashing (c) Linked list (d) Tree
9)	Which data structure allows deleting data elements from front and inserting at rear?
	(a) Stacks (b) Queues (c) Deque (d) Binary search Tree
10	An algorithm that calls itself directly or indirectly as known as
	(a) Sus algorithm (b) Recursion
	(c) Polish rotation (d) Traversal algorithm