Total No. of Printed Pages: 3

SUBJECT CODE NO:- B-2046 FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. T. Y. (Sem-V)

Examination November/December- 2022 Mathematics MAT - 501 Real Analysis – I

[Time: 1:30 Hours] [Max. Marks:50]

"Please check whether you have got the right question paper."

N.B.

- 1) All questions are compulsory.
- 2) Figures to the right indicate Full marks.
- Q.1 A] Attempt any one:
 - a) Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent.

08

b) Define Cauchy sequence.

08

If the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ converges then prove that $\{S_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

- B] Attempt any one:
 - c) If $\{S_n\}_{n=1}^{\infty}$ is a sequence of real numbers diverging to infinity, then prove that $\lim_{n\to\infty} Sup\ S_n = \infty = \lim_{n\to\infty} \inf S_n.$
 - d) For $n \in I$, let $S_n = \frac{1 \cdot 3 \cdot 5 \cdot ...(2n-1)}{2 \cdot 4 \cdot 6 \cdot ... 2n}$ Prove that $\{S_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n \to \infty} S_n \le \frac{1}{2}$.
- Q.2 A] Attempt any one:
 - a) Let $\sum_{n=1}^{\infty} a_n$ be a series of nonzero real numbers and let $a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|$, $A = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$ Then prove that $\sum_{n=1}^{\infty} |a_n| < \infty$ if A < 1.

- b) If $\sum_{n=1}^{\infty} a_n$ is a divergent series of positive numbers then prove that there is a sequence $\{\epsilon_n\}_{n=1}^{\infty}$ of positive numbers which converges to zero but For which $\sum_{n=1}^{\infty} \epsilon_n a_n$ still diverges.
- B] Attempt any one:
 - a) Does the series 07
 - i) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$ and
 - ii) $\sum_{n=1}^{\infty} \frac{n+1}{10^{10}(n+2)}$ converge or diverge?

Justify your answer.

- b) Prove that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n}$ converges.
- Q.3 A] Attempt any one:
 - a) If $u_1, u_2, ..., u_n$ are implicit functions of $x_1, x_2, ..., x_n$ then prove that 05

$$\frac{\partial(u_1, u_2, ..., u_n)}{\partial(x_1, x_2, ..., x_n)} = (-1)^n \frac{\frac{\partial(F_1, F_2, ..., F_n)}{\partial(x_1, x_2, ..., x_n)}}{\frac{\partial(F_1, F_2, ..., F_n)}{\partial(u_1, u_2, ..., u_n)}}$$

- b) Prove that the inverse image of the intersection of two sets is the intersection of the inverse images.
- B] Attempt any one:
 - c) Find the Jacobian of $y_1, y_2, ..., y_n$ being given $y_1 = 1 x_1, y_2 = x_1(1 x_2), ..., y_n = 05$ $x_1x_2 ... x_{n-1}(1 x_n).$
 - d) If $x = c \cos u \cos hv$, $y = c \sin u \sin hv$,

 Prove that $\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{2}c^2(\cos 2u \cos h2u)$.

Q.4 Choose correct alternative of the following.

10

- 1) If $f: A \to B$ is a function defined by $f(x) = \sqrt{x}$ then
 - a) $A = B = I\mathbb{R}$
 - b) $A = I\mathbb{R}, B = I\mathbb{R}^4$
 - c) $A = I\mathbb{R}^+, B = I\mathbb{R}$
 - d) $A = I\mathbb{R}^+, B = I\mathbb{R}^+$
- 2) Total number of sequences can be defined whose range set containing either 1 or -1 are
 - a) Countable infinite
 - b) Uncountable infinite
 - c) Two
 - d) One
- 3) If for every E > 0, there exist a positive integer N does not depend on ϵ such that

 $|S_n - L| < \epsilon$ For all $n \ge N$ then

- a) All but finite number of terms of $\{S_n\}$ are equal to L
- b) No term of $\{S_n\}$ is equal to L
- c) Sequence diverges to ∞
- d) Sequence diverges to −∞
- 4) The Series $\sum \frac{1}{n}$ is
 - a) Convergent
 - b) Divergent
 - c) Oscillatory
 - d) None of these
- 5) If u(x, y) = xy and v(x, y) = x + y then Jacobian of u and v is
 - a) x
 - b) y
 - c) x y
 - d) y x