Total No. of Printed Pages: 02

SUBJECT CODE NO:- B-2115 FACULTY OF SCIENCE & TECHNOLOGY

B. Sc. T.Y. (Sem-V)

Examination November/December- 2022 Mathematics

Ordinary Differential Equation -I 504

[Time: 1:30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

N.B

- 1) All questions are compulsory
- 2) Figures to the right indicate full marks

Q.1 A) Attempt any one:

a) Consider the equation y' + ay = b(x) where a is a constant and b is continuous function 08 on an interval I. If x_0 is a point in I and C is any constant. Prove that the function φ defined by

$$\phi(x) = e^{-ax} \int_{x_0}^x e^{at} b(t) dt + ce^{-ax}$$

is a solution of this equation? Also prove that every solution has this form

b) If r is a root of multiplicity m of a polynomial P. deg $P \ge 1$ then prove that $P(r) = P'(r) = ----- = P^{(m-1)}(r) = 0$ and $P^{(m)}(r) \ne 0$

08

B) Attempt any one

c) Find all solutions of the equation $y' + 2xy = xe^{-x^2}$

07 07

- d) If ϕ be the solution of y' + iy = x such that $\phi(0) = 2$ find $\phi(\pi)$
- Q.2 A) Attempt any one
 - a) Prove that two solutions ϕ_1 , ϕ_2 of $L(y) = y'' + a_1 y' + a_2 y = 0$ are linearly independent 08 on an interval I if and only if, $W(\phi_1, \phi_2)(x) \neq 0$ for all x in I
 - b) If ϕ_1, ϕ_2 are two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a 08 point x_0 then prove that $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)} W(\phi_1, \phi_2)(x_0)$
 - B) Attempt any one:

c) Find all solutions of the equation y'' + 4y = cosx

07

d) Find the solution of the following initial value problem y(0) = 0, y'(0) = 0y'' + (4i + 1)y' + y = 0,

- Q.3 A) Attempt any one:
 - a) Prove that for all real θ $e^{i\theta} = \cos\theta + i\sin\theta$

b) Prove that for any real x_0 and constants \propto , β there exists a solution φ of the initial value problem

 $L(y) = y'' + a_1 y' + a_2 y = 0$ on $-\infty < x < \infty$

B) Attempt any one

c) Find the two square roots of i.

d) Find all solutions ϕ of y'' + y = 0 $\phi(0) = 0, \phi'(\pi/2) = 0$

05

Choose the correct alternative

10

1) The wronskian of the functions

 $\phi_1(x) = \sin x$, $\phi_2(x) = e^{ix}$ is

- a) 0 b) 1 c) -1 d) None of these
- 2) The roots of the equation $Z^2 + Z 6 = 0$ are
 - a) -3,2
- b) 2,3
- c) 3,-2
- d) none of these
- 3) If $\phi(x) = e^{iax}$ where a is a real constant then $\phi''(x) + a^2\phi(x) =$
 - a) 16
- b) 0
- c) e^{iax}
- d) none of these
- 4) $\phi(x) = e^{-\sin x}$ is a solution of the differential equation?
 - a) $y' + (\cos x)y = 0$
- b) y' (cosx)y = 0 c) y' + (sinx)y = 0 d) None of these
- 5) All solutions of $y'' + \omega^2 y = 0$ are of the to form
 - a) $Ge^{i\omega x} c_2 e^{-i\omega x}$
- b) $Ge^{\omega x} + c_2 e^{-\omega x}$ c) $Ge^{i\omega x} + c_2 e^{-i\omega x}$ d) none of these