Total No. of Printed Pages:2

SUBJECT CODE NO:- B-2061 FACULTY OF SCIENCE & TECHNOLOGY

B.Sc. T.Y. (Sem-VI)

Examination November/December- 2022 Mathematics MAT-601 Real Analysis-II

[Time: 1:30 Hours] [Max. Marks:50]

Please check whether you have got the right question paper.

N.B

- i) All questions are compulsory.
- ii) Figures to the right indicate full marks.

Q.1 A. Attempt any one:

08

- a) Let $\langle M_1, P_1 \rangle$ and $\langle M_2, P_2 \rangle$ be metric space and let $f : M_1 \to M_2$. Then prove that f is continuous on M_1 if and only $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .
- b) If E is any subset of a metric space M, then prove that \overline{E} is closed.

B. Attempt any one:

07

- c) Show that if ρ and σ are both metrics for a set M, then $\rho + \sigma$ is also a metric for M.
- d) If $f: R^2 \to R^2$ is defined by $f(\langle x, y \rangle) = (\langle y, x \rangle)$ $(\langle x, y \rangle) \in R^2$, show that f is continuous on R^2 .

Q.2 A. Attempt any one:

08

- a) Prove that the metric space $\langle M, P \rangle$ is compact if and only if every sequence of points in M has a subsequence converging to a point in M.
- b) Let f(x) be Riemann integrable in every interval and is periodic with 2π as its period, then prove that $\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} f(a+x) dx$ where a is any number.

B. Attempt any one:

07

- c) Prove that R^2 is complete.
- d) For each $n \in I$ let b_n be the subdivision $\{0, 1/n, 2/n, \dots, n/n\}$ of [0, 1]. Compute $\lim_{n \to \infty} L[f; \sigma n]$ for the function $f(x) = x^2 (0 \le x \le 1)$.

Q.3 A. Attempt any one:

- a) Let f be a continuous function from the compact metric space M₁ into the metric space M₂. Then prove that the range $f(M_1)$ of f is also compact.
- b) If f is a continuous function on the closed bounded interval [a , b] , and if $\Phi'(x) = f(x)$ $(a \le x \le b)$ then prove that $\int_a^b f(x)dx = \Phi(b) - \Phi(a)$.

B. Attempt any one:

- c) Find the Fourier series of f(x) = x in $[-\pi, \pi]$.
- d) If $0 \le x \le 1$ show that $\frac{x^2}{\sqrt{2}} \le \frac{x^2}{\sqrt{1+x}} \le x^2$

Q.4 Choose the correct alternative:

- I) The convergent sequence in a metric space has
 - a) Unique limit
- c) Limit ∞
- b) Distinct limit
- d) None of these
- If $\langle M, P \rangle = R^1$ and $\langle A, P \rangle = [0, 1]$, then the open ball $B \left[0; \frac{1}{2} \right]$ in R^1 is the interval ----.

- a) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ c) $\left(-\frac{1}{2}, \frac{1}{2}\right]$ b) $\left(0, \frac{1}{2}\right)$ d) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
- The metric space [a, b] with absolute-value metric is ----
 - a) Only totally bounded
- c) Bounded
- b) Only complete
- d) Totally bounded and complete
- If f is a bounded function on the closed bounded interval [a, b] and σ is any subdivision of [a, b], then $\int_{-a}^{b} f(x)dx = ----$

 - a) $l.u.b.\cup [\tilde{f}, \sigma]$ c) $l.u.b.L[f, \sigma]$
 - b) $g.l.b.\cup [f;\sigma]$
- d) $g.l.b.L[f,\sigma]$
- For all n = 0, 1, 2,, $\int_{-\pi}^{\pi} \cos^2 nx \, dx =$

- d) π^2