Total No. of Printed Pages:2

SUBJECT CODE NO:- 2054 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y (Sem-II)

Mathematics MAT - 201 (Integral Calculas)

[Time: 1:53 Hours]	9	70)	(\$)		200		× 76	H	Max.	. M	arks	:50	Į
--------------------	---	-----	------	--	-----	--	------	---	------	------------	------	-----	---

Please check whether you have got the right question paper.

N.B

- 1) Attempt all questions.
- 2) Figures to the right indicate full marks.
- A) Attempt any one Q.1

08

- a) Obtain a reduction formula for $\int x^m \sin nx dx$
- b) Evaluate the definite integral $\int_0^{\pi/2} \cos^n x \, dx$ where n is positive integer also find $\int_0^{\pi/4} \cos^6 2t \ dt$

07

- B) Attempt any one c) Evaluate $\int_0^1 \frac{dx}{x^2 + 2x \cos \alpha + 1}$ where $0 \le \alpha < \pi$ d) Evaluate $\int_0^\infty \frac{dx}{(1+x)^3 (2+x)}$
- Q.2 A) Attempt any one

08

- a) Evaluate $\int_{a}^{b} \cos x \, dx$ the limit of a sum
- b) Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- B) Attempt any one
 - c) Find the length of the are of the parabola $y^2 = 4ax$ cut off by its latus redtum.
- 07
- d) Show that the volume obtained by revolving about x-axis the arc of the curve y=f(x)intercepted between the point whose abscissa are a,b is $\int_a^b \pi y^2 dx$ it being assumed that are does not cut x-axis.
- Q.3 A) Attempt any one

05

- a) Prove that the necessary and sufficient condition for a continuous vector point function for a irrotational in a simply connected region R is that it is the gradient of a scalar point function.
- b) Prove that $\int_{v} (\vec{g} \cdot curl \ curl \ \vec{f} \vec{f} \cdot curl \ curl \ \vec{g}) dv = \int_{s} \{ (\vec{f} \times curl \ \vec{g}) \vec{f} \cdot \vec{g} \cdot$ $(\vec{g} \times curl \vec{f})$ \ d\vec{a}
- B) Attempt any one

05

c) Show that $\frac{1}{3} \int_{s} \vec{r} \cdot d\vec{a} = v$ where v is the volume enclosed by the surface's

- d) Evaluate $\int_{S} \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x^2 + y^2)\bar{\iota} 2xy\vec{\jmath}$ and the curve C is the rectangle in the xy-plane bounded by y=0, x=a, y=b, x=0.
- Q.4 Choose the correct alternatives

10

- 1) $\int \frac{2dx}{3-2x} = -$ a) $\log(3-2x)$ b) $-\log(3-2x)$ c) $1/2\log(3-2x)$ d) $-1/2\log(3-2x)$
- 2) $\int_0^{\pi/2} \sin^7 x \ dx$
 - a) $\frac{16}{35}$
 - c) $\frac{16}{40}$

- b) $\frac{15}{35}$ d) $\frac{-16}{35}$
- 3) The length of the are of the cure y=log sec x from x-0 to $x = \pi/3$ is equal to
 - a) $2\log(2+\sqrt{3})$
- b) Log $(2+\sqrt{3})$
- c) 3log2
- d) Log $(2-\sqrt{3})$
- 4) A vector point function is said to be -----in a region if its circulation along every closed curve in the region is zero
 - a) Polar
- b) Axial
- c) Irrotational
- d) Solenoidal

- 5) Value of $\iint_{S} \nabla r^2 . d\vec{s}$ is

- a) V b) 3V c) 6V d) 12V