Total No. of Printed Pages:2

SUBJECT CODE NO:- 2050 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. S.Y (Sem-III)

Examination March/April-2022 (To be held in June/July-2022) Mathematics MAT – 301 Number Theory

[Time: 1:53 Hours]				k. Marks: 5	
N.B			Please check whether you have got the right question paper. i) Attempt all questions. ii) Figures to the right indicate full marks.		
Q. 1	(a)		ny one of the following:	08	
		1.	For positive integers a and b prove that $Gcd(a, b) lcm(a, b) = ab$.		
		ii.	If a and be are integers, not both zero, then prove that a and be are relatively prime if and only if there exist integers x and y such that $1 = ax + by$.		
	(b)	Attempt a	ny one of the following:	07	
	(-)	i.	By using the Euclidean algorithm, find the values of integers x and y satisfying ged $(24, 138) = 24x + 138y$.		
		ii.	Solve the linear Diophantine equation $172x + 20y = 1000$.		
Q. 2	(a)	Attempt a	ny one of the following	08	
	` /	i.	Prove that the linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if d/b, where $d = \gcd(a, n)$. If d/b then it has d mutually incongruent solutions modulo n . State and prove Wilson's theorem.		
	(b)	Attempt a	ny one of the following:	07	
	(-)	5 % A 6 6 %	Use Fermat's theorem to verify that 17 divides $11^{104} + 1$.		
		ii.	Solve the following set of simultaneous congruences $x \equiv 5 \pmod{5}, x \equiv 4 \pmod{11}, x \equiv 3 \pmod{17}$.		
Q.3	(a)	Attempt any one of the following:		05	
	20 000 20 1000		Show that $\sqrt{2}$ is irrational number:		
		ii	If f is multiplicative function and F is defined by $F(n) = \sum_{d/n} f(d)$,		
	6/0		Then show that F is also multiplicative function.		
	(b)	Attempt a	ny one of the following:	05	
		7 16 0	Calculate $\phi(5040)$.		
	A A	ii.	Find the remainder when 2^{50} is divided by 7.		

Q. 4 Choose the correct alternative and **rewrite the sentence**:

- (a) The square of any odd integer is of the form _____
 - i. 5k + 1
 - ii. 8k + 1
 - iii. 3k + 1
 - iv. 8*k*
- (b) Lcm(-12, 30) =
 - i. 30
 - ii. –12
 - iii. 60
 - iv. 360
- (c) Number of solutions for the linear congruence $9x \equiv 21 \pmod{30}$ are
 - i. (
 - ii. 1
 - iii. 4
 - iv. 3
- (d) The value of $\sigma(20) = \underline{}$
 - i. 28
 - ii. 12
 - iii. 42
 - iv. 54
- (e) If p is a prime, and k > 0, then $\phi(p^k) = \underline{\hspace{1cm}}$
 - i. k 1
 - ii. pk
 - iii. $p^{k-1} p^k$
 - iv. $p^k p^{k-1}$