SUBJECT CODE NO:- 2066 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. S.Y (Sem-IV)

Examination March/April-2022 (To Be Held In June/July-2022) **Mathematics MAT - 402 Partial Differential Equation**

[Time: 1:53 Hours] [Max. Marks:50]

Please check whether you have got the right question paper.

N.B.:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- Q.1 A) Attempt any one:

08

- a) Define Lagrange's linear partial differential equation and explain the method of solving it.
- b) Explain the method of solving a non-linear partial differential equation of the from f(p,q)=0
- B) Attempt any one

07

- c) Find the complete integral of $p^3 + q^3 = 3pqz$
- d) Solve:

$$x(y-z)p + y(z-x)q = z(x-y)$$

Q.2 A) Attempt any one 08

- a) Explain the general method to solve a partial differential equation of the form f(x,y,z,p,q)=0
- b) Solve the equation

$$R_r + S_s + T_t = V,$$

Where r, s, t have their usual Meanings and R, S, T, and V are functions of x, y, z, p and q.

B) Attempt any one

07

- c) Find the complete integral of $2P_1X_1X_3 + 3P_2X_3^2 + P_2^2P_3 = 0$
- d) solve:

$$(D^2 - D D' - 2D)Z = Sin (3x + 4y)$$

Q.3 A) Attempt any one: 05

- a) With usual notations, Prove that $\frac{1}{F(D,D')}e^{ax+by} = \frac{1}{F(a,b)}e^{ax+by}$, if $f(a,b) \neq 0$
- b) Obtain the general solution of the equation

$$(A_0 D^n + A_1 D^{n-1} D' + \dots + A_n D' D'^n)z = 0$$

c) Solve:

$$Ys + p = \cos(x + y) - y\sin(x + y)$$

d) Solve

$$(D^2 - 2DD' + D'^2)Z = 12xy$$

Q.4 Choose the correct alternative

1) The complete integral of pq=k is -----.

a)
$$z = ax + \frac{1}{a}y + c$$

b)
$$z = ax + \frac{k}{a}y + c$$

c)
$$z = ax + y + c$$

$$d) z = x + ky + c$$

2) Lagrange's subsidiary equations of $P + 3q = 5Z + \tan(y - 3x)are - - - -$

a)
$$\frac{dx}{1} = \frac{dy}{3} = \frac{dz}{5z + \tan(y - 3x)}$$

b)
$$dx = \frac{dy}{3} = \frac{dz}{5z}$$

c)
$$\frac{dx}{p} = \frac{dy}{q} = \frac{dz}{5z}$$

- d) None of these
- 3) The Solution of the equation (D MD' K)Z = 0 is - - - - -

a)
$$Z = e^{-kx} \phi(y + mx)$$

b)
$$z = e^x \phi(y + mx)$$

c)
$$z = e^{kx} \phi(y)$$

$$d) z = e^{kx}\phi(y + mx)$$

4) The complementary function of $(D^2 - 6DD' + 9D'^2)z = 12 x^2 is - - - - -$

a)
$$z = \phi_1(y + 3x) + \phi_2(y - 3x)$$

b)
$$z = \phi_1(y + 3x) + x^2\phi_2(y - 3x)$$

c)
$$z = \phi_1(y + 3x) + x\phi_2(y + 3x)$$

d)
$$z = \phi_1(y + 3x) + \phi_2(y + 4x)$$

5) The particular integral of $(2D - D')^2 Z = 16 \log(x + 2y)$ is ----.

a)
$$2x^2 \log(x + 2y)$$

b)
$$xlog(x+2y)$$

c)
$$x \log(x + 4y)$$

d)
$$\frac{x^2}{2}\log(x+2y)$$