SUBJECT CODE NO: - 2012 FACULTY OF SCIENCE & TECHNOLOGY B.Sc. S.Y (Sem-IV) EXAMINATION JUNE/JULY 2022 Chemistry Paper-XI (Physical Chemistry-II)

limitations. Calculate equivalent platinum electrodes 2.0 ohms. le. 10 10 10 10 10 10 10 10)
limitations. Calculate equivalent platinum electrodes 2.0 ohms. le. 100)
limitations. Calculate equivalent platinum electrodes 2.0 ohms. le. 100)
limitations. 10 Calculate equivalent platinum electrodes 2.0 ohms. 10)
. Calculate equivalent platinum electrodes 2.0 ohms.)
ohms. le. 10	
le. 10)
10	
e and basic buffer 10)
20)
10)
	20

(-)	TC 4) D
(C)	$\Gamma =$	2-P

(d)
$$F=1-P$$

- 4. The eutectic temperature of silver-lead system is
 - (a) 300°C

(b) 290°C

(c) 305°C

- (d) 303°C
- 5. For strong electrolytes, the degree of dissociation is
 - a) nearly equal to one
 - b) nearly equal to two
 - c) nearly equal to zero
 - d) nearly equal to infinity
- 6. In Hittorf's method for determination of transport number we make use of a
 - (a) H-tube

(b) U-tube

(c) V-tube

- (d) L-tube
- 7. Kohlrausch's law can be expressed as

(a)
$$\lambda_{\alpha} = \lambda_{a} - \lambda_{c}$$

(b)
$$\lambda_{\alpha} = \lambda_{c} - \lambda_{a}$$

(c)
$$\lambda_{\alpha} = \lambda_a + \lambda_c$$

(d)
$$\lambda_{\alpha} = \lambda_{a} \times \lambda_{c}$$

- 8. The pH of 0.01M KOH Solution will be
 - (a) 1

(b) 2

(c) 14

- (d) 12
- 9. The cell which converts electrical energy into chemical energy is
 - (a) electrolytic cell
- (b) electrochemical cell

(c) both a & b

- (d) none of these
- 10. The Henderson equation for an acidic buffer is

a)
$$pH=pKa - log \frac{[Salt]}{[acid]}$$

b)
$$pH=pKa + log \frac{[Salt]}{[acid]}$$

c)
$$pH=pKa - log \frac{[acid]}{[Salt]}$$

d)
$$pOH=pKa + log \frac{[Salt]}{[acid]}$$