Total No. of Printed Pages:2

SUBJECT CODE NO:- 2046 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. T.Y (Sem. V)

Examination March/April-2022 (To Be Held In June/July-2022) **Mathematics MAT - 501** Real Analysis - I

[Time:	1:53 Hours] [Max. Marks	: 50]
N.B	Please check whether you have got the right question paper. 1) all questions are compulsory 2) figures to the right indicate full marks	S B S
Q.1	A) Attempt any one	00
	1) Prove that limit of a sequence $\{S_n\}_{n=1}^{\infty}$ of nonnegative numbers is also nonnegative number	08
	2) If the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is convergent then prove that $\{S_n\}_{n=1}^{\infty}$ is bounded	08
	B) Attempt any one	
	a) Find the limit superior and limit inferior for the sequence $\left\{\sin\frac{n\pi}{2}\right\}_{n=1}^{\infty}$	07
	b) If $S_n = \frac{10^n}{n!}$ find $N \in I$ such that $S_{n+1} < S_n$ $(n \ge N)$	07
Q.2	A) Attempt any one	
	a) If $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B then prove that $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to CA	08
	b) Prove that i) If $\sum_{n=1}^{\infty} a_n$ converges absolutely then both $\sum_{n=1}^{\infty} p_n$ & $\sum_{n=1}^{\infty} q_n$ converges ii) If $\sum_{n=1}^{\infty} a_n$ converges conditionally then both $\sum_{n=1}^{\infty} p_n$ & $\sum_{n=1}^{\infty} q_n$ diverges where $p_n = \max(a_n, o)$ & $q_n = \min(a_n, o)$	08
	B) Attempt any one	
	c) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges	07
	d) If $\sum_{n=1}^{\infty} a_n$ is a convergent series then prove that $\lim_{n\to\infty} a_n = 0$	07
Q.3	A) Attempt any one	
	a) Prove that inverse image of the union of two sets is the union of the inverse images	05
	b) If $u_1, u_2,, u_n$ are functions of $y_1, y_2,, y_n$ and $y_1, y_2,, y_n$ are functions of $x_1, x_2,, x_n$ then prove that $\partial(u_1, u_2,, u_n) = \partial(u_1, u_2,, u_n) = \partial(y_1, y_2,, y_n)$	05
	$\frac{\partial(u_1, u_2,, u_n)}{\partial(x_1, x_2,, x_n)} = \frac{\partial(u_1, u_2,, u_n)}{\partial(y_1, y_2,y_n)} \cdot \frac{\partial(y_1, y_2,, y_n)}{\partial(x_1, x_2,, x_n)}$	

B) Attempt any one

05 c) If $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$,

$$Z = r \cos \theta \text{ Find } \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$$

d) Prove that the set of all polynomial functions with integer coefficient is countable

05

Q.4 Choose correct alternative of the following

- 10
- 1) If F(x) = [x], where [.] is the greatest integer function on IR to IR then which of the following is true
 - a) f(x) is one –one
- b) f(x) is onto
- c) f(x) is both one –one and onto
- d) f(x) is neither one –one nor onto
- 2) If $S_n = n^2$ then the sequence whose n^{th} term $\frac{1}{S_n}$ is ----
 - a) Converges to zero b) converges to one c) oscillatory d) divergent
- 3) If $p(x) = a_1 x^3 + b_1 x^2 + c_1 x + d_1$ where a,b,c,d, ϵIR^+ then $\lim_{n \to \infty} \frac{p(n+1)}{p(n)}$ c) depends on $a_1, b_1, c_1 \& d_1$ d) does not exist
- 4) A series $\sum a_n$ is said to be absolutely convergent if
 - a) $\lim_{n\to\infty} a_n = o$ b) $\lim_{n\to\infty} a_n = +ve$ c) $\sum a_n$ is divergent d) $\sum |a_n|$ is convergent
- 5) If u(x,y) = x+y and v(x,y) = xy then Jacobian of u and v is
 - a) x b) y c) x-y d) y-x