Total No. of Printed Pages:03

SUBJECT CODE NO:- 2123 FACULTY OF SCIENCE AND TECHNOLOGY **B.Sc. T.Y Sem-VI**

Examination March/April-2022 (To be held in June/July-2022)

Mathematics Ordinary Differential Equation-II - MAT- 604 [Time: 1:53 Hours] [Max. Marks: 50] Please check whether you have got the right question paper. N.B 1. All questions are compulsory. 2. Figures to the right indicate full marks. Q.1 A) Attempt any one: 08 a) Prove that there exist n linearly solutions of _ $L(y) = y^{(n)} + a_1 + (x)y^{(n-1)} + ... + an(x)y = 0 \text{ on } I.$ b) If $\phi_1, \phi_2, ..., \phi_n$ are n solutions of 08 $L(y) = y^{(n)} + a_1 + (x)y^{(n-1)} + ... + an(x)y = 0$ on an interval I, prove that they are linearly independent there if and only if $W(\phi_1, \phi_2, ..., \phi_n)(x) \neq 0$ for all x in I. B) Attempt any one: 07 c) One solution of $x^3y''' - 3x^2y'' + 6xy' - 6y = 0$, for x > 0 is $\phi_1(x) = x$. find the basis for the solutions for x > 007 d) One solution of $x^2y'' - 2y = 0$ on $0 < x < \infty$ is $\phi_1(x) = x^2$. find all solutions of $x^2y'' - 2y = 2x - 1$ on $0 < x < \infty$. 08 Q.2 A) Attempt any one:

a) Suppose that $\phi_1, \phi_2, ..., \phi_n$ are n solutions of $L(y) = y^{(n)} + a_1 + (x)y^{(n-1)} + ... + an(x)y = 0$ on I Satisfying

$$\phi_i^{(i-1)}(xo) = 1, \phi_i^{(i-1)}(xo) = 1. j \neq i$$

If ϕ is any solution of $L(y) = 0$ on I , Prove that there are n constants $c_1, c_2, ..., c_n$ such that.
 $\phi = c_1\phi_1 + c_2\phi_2 + ... + c_n\phi_n$

08 b) Consider the second order Euler equation $x^2y'' + axy' + by = 0$ (a, b constants) and the polynomial q is given by q(r) = r(r-1) + ar + bProve that a basis for the solutions of the Euler equation on any interval not containing x = 0

Is given by
$$\phi_1(x) = |r|^{r_1}$$
, $\phi_2(x) = |x|^{r_2}$
In case r_1, r_2 are distinct roots of q.

B) Attempt any one.

07

c) Find two linearly independent solutions of the equation $(3x-1)^2 y'' + (9x-3)y' - 9y = 0$ for x > 1/3

O

- d) Find two linearly independent power series solutions of the equation. $y'' x^2y = 0$
- Q.3 A) Attempt any one:

05

a) Show that:

$$\int_{-1}^{1} Pn^{2}(x)dx = \frac{2}{2n+1}$$

05

b) Show that the coefficient of x^n in

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \text{ is } \frac{(2n)!}{2^n (n!)^2}$$

05

B) Attempt any one:

c) Find all solutions of the equation $x^2y'' + xy' + 4y = 1, x| > 0$

05

d) Suppose that ϕ is any solution of

$$x^2y'' + xy' + x^2y = 0$$
 for $x > 0$ and $\psi(x) = x^{1/2} \phi(x)$. show that ψ satisfies the equation

$$x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0, for \ x > 0$$

10

Choose the correct alternatives: Q.4

- If $\phi_1, \phi_2, \dots, \phi_n$ are n solutions of $y^{(n)} + a_1(x)y^{(n-1)} + \dots + an(x)y = 0$ on an interval I i) and x_o be any point in I. Then _
 - a. $W(\phi_1, \phi_2, ..., \phi_n)(x) = \exp[\int_{x_0}^x a_1(t)dt]$
 - b. $W(\phi_1, \phi_2, ..., \phi_n)(x) = \exp[-\int_{x_0}^x a_1(t)dt]W(\phi_1, \phi_2 ... \phi_n)(x_0)$
 - c. $W(\phi_1, \phi_2, ..., \phi_n)(x) = \int_{x_0}^x a_1(t)dt$
 - d. $W(\phi_1, \phi_2, ..., \phi_n)(x) = \exp[a_1(t)dt]W(\phi_1, \phi_2, ..., \phi_n)(x_0)$
- The function $J_o(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m=o(m!)} \left(\frac{x}{2}\right)^{2m}$ is solution of ii)
 - a. Legendre equation
 - b. Bessel equation
 - c. Euler's equation
 - d. 'first order linear equation
- If $P_n(-x) = (-1)^n P_n(x)$, then $P_n(-1) = \cdots$ iii) a) $(-1)^n$
 - b) $(1)^n$
 - c) 1
 - d) n
- The solution of the equation

$$x^2y'' + xy' + y = 0$$
 for $x > 0$ are_____
a. x, x^{-1}

b. x^{L}, x^{-L} d. x^{2}, x^{-2}

c. $x^{2i} \cdot x^{-2i}$

- The singular point of the equation $(1 x^2)y'' 2xy' + 2y = 0$ are v)
 - a. 2, -2

b. 0,0

c. 1,-1

d. 3,-3