Examination October 2020

B.Sc. F.Y (Sem-I)

2162 Mathematics MAT - 102 (Differential Equations)

Time: One Hour

Max. Marks: 25

Solve any 25 questions				
1 The condition for the differntial equation $Mdx + Ndy = 0$ be exact differential equation				
$\stackrel{(A)}{=} \frac{\partial M}{\partial Y} = \frac{\partial N}{\partial X}$	$ ^{(B)} \frac{\partial M}{\partial Y} = \frac{-\partial N}{\partial X} $	(C) $\frac{\partial M}{\partial X} = \frac{\partial N}{\partial Y}$	(D) $\frac{\partial M}{\partial X} = \frac{-\partial N}{\partial Y}$	
2 A differential equation is an equation that involves				
(A)Integral	(B)Differentials	(C)Implicit function	(D)None of these	
3 Ordinary differentials equations refer	rs to			
(A)Single independent variables	(B)Two independent variables	(C)More than two independent variables	s (D)None of these	
⁴ The equation $\frac{dy}{dx} + PY = \phi$, wh	here P and Q are functions 2 of x or constant	is called asequations		
(A)Exact	(B)Homogeneous	(C)Linear	(D)Non- homogeneous	
5 A exact differential equation is forme	ed by 2 equating an exact differential to			
(A)Function of 'x'	(B)Zero	(C)Function of 'y'	(D)All of these	
6 Solution of ordinary differential equa				
	y (B)Relation between the variable x and constant	(C)Relation between the variable x and constant	(D)None of these	
⁷ The integrating factor of the linear differential equation $\frac{dy}{dx} + Py = \phi$ is				
(A) $e^{-\int pdx}$	(B) $e^{\int \phi} de$	(C) $e^{-\int de}$	(D) $e^{\int pdx}$	
⁸ The integrating factor of the linear differential equation $x \frac{dy}{dx} - ay = (x + 1)$ is				
(A) x^a	(B) 1	(C) 1	(D) x ⁺⁴	
(~) X	(B) $\frac{1}{r^a}$	(C) $\frac{1}{r^4}$		
⁹ The general solution of $\frac{d^n y}{d^n + p}$	$\frac{d^{n}-1y}{dx^{n}-1} + p_{2}\frac{d^{n}-2y}{dx^{n}} - 2 + \dots + p_{n}y = x$	dis given by		
ux	ax - 1 ax			
(A)Y = C.F. + P.I 10 1 sin	(B)Y = C.F.	(C)Y = P.I.	(D)None of these	
$\int \frac{1}{f(D^2)} \sin ax =$				
(A) $\frac{1}{f(a^2)} \sin ax =$	(B) $\frac{1}{f(-a^2)}\sin ax =$	(C) $\frac{1}{f(a)} \sin ax =$	(D) $\frac{1}{f(-a)}\sin ax =$	
5 ()	5 (-)	2,		
¹¹ The general solution of $\frac{d^2 y}{dx^2}$ + $3\frac{dy}{dx}$ - 54 y = 0 is				
(A) $Y = c_1 e^{6x} + c_2 e^{-9x}$	(B) $Y = c_1 e^{-6x} + c_2 e^{-9x}$	(C) $Y = c_1 e^{6x} + c_2 e^{9x}$	(D) $Y = c_1 e^{-6x} + c_2 e^{9x}$	
12 The particular integral of the differential equation				
$\frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} + 6 y = e^{4x} \dots$	is			
(A) $P.I = e^{4x}/2$	(B) $P.I2 = e^{4x}$	(C) $P.I. = e^{4x}/4$	(D) $P.I.=4e^{4x}$	
¹³ The integral factor for the differential	equation $\cos^{2x} \frac{dy}{dx} + y = \tan x is - \cdots$			
(A) e ^{kane}	(B) cos x	(C) e^{cosx}	(D) $Sec^2 x$	
_	al equation $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 12y = 0$			
(A) $Y = c_1 e^{-4x} + c_2 e^{3/2x}$	ax ax	(C) $Y = c_1 e^{4x} + c_2 e^{3/2x}$	(D) $Y = c_1 e^{4x} + c_2 e^{-3/2x}$	
15 The particular integral of the differen	1 2	1 2 -		
$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + y = e^{2x}$				
dx dx (A) e^{2x}	(B) $e^{2x}/9$	(C) $9e^{2x}$	(D) $e^{2x}/3$	
 (A) e 16 The general solution of the differenti 		(~) 90	(-) e 13	
$a^2 \frac{d^y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0$				
(A) $Y = c_1 x^4 + c_2 x^{-1}$	(B) $Y = c_1 x^{-4} + c_2 x^{-1}$	(C) $Y = c_1 x^{-4} + c_2 x$	(D) $Y = c_1 x^4 + c_2 x$	
	pponding to $z = ax + by + ab$ is			
(A)z = px + qy	(B)z = pq	(C)z = px + qy + pq	(D)None of these	
18 The integrating factor of the linear equation				
$\frac{dy}{dx} + y = e^{-x}$ is				

$\frac{dy}{dx} + y = e^{-x} \quad \text{is} _$

	Examination	n October 2020		
(A) e^x	(B) e^{-x}	(C) e^{2x}	(D) e^{-2x}	
19 The partial differential equation can be formed by				
(A)Eliminating arbitrary constant	(B)Eliminating arbitrary function	(C)Both a and b	(D)None of these	
20 The partial differential equation obtain	ined from the equation z = (x + a) (y +b) is _			
(A)z = pq	(B)p +q = z	$(C)z = p^2q^2$	(D)p-q = z	
21 The particular integral of the equation				
$x^2 \frac{d^{2y}}{dx^2} + 7x \frac{dy}{dx} + 5y = x^5$ is				
(A) x ⁵	(B) $\frac{x^5}{5}$	(C) $\frac{x^5}{60}$	(D) $\frac{x^5}{25}$	
	5	60	25	
²² The general solution of the differential equation $\frac{d^2 y}{dx^2} - m^2 y = 0$ is				
(A) $(c_1 + c_2 x) e^{mx}$	(B) $c_1 e^{mx} - c_2 e^{-mx}$	(C) $c_1 e^{mx} + c_2 e^{-mx}$	(D) None of these	
²³ The equation $\frac{dy}{dx} + PY = \phi y$, where P and Q are functions of x or constant is called as				
(A)Bernoull's constant	(B)Lagrange's constant	(C)Linera equation	(D)None of these	
24 The order of equation of the different	tial equation is the order of			
	(B)Lower order derivative appearing in	(C)Both a and c	(D)None of these	
equation	equation			
$\frac{25}{f} \frac{1}{f}(D)e^{ax}V_1 = \underline{\qquad}$				
(A) $e^{ax} \frac{1}{f(D+a)} v_1$	(B) $e^{ax} \frac{1}{f(D-a)} v_1$	(C) $\frac{1}{f(D+a)}v_1$	(D) $e^{ax} \frac{1}{f(a)} v_1$	
26 The partial differential equation obtained from the equation $I = e^{xy} \Theta(x - y)$ is				
(A) $p+q=mz$	(B) $P-q=mz$	(C) $pq = mz$	(D) $p^2 + q^2 = mz$	
²⁷ The general solution of the differntial equation $\frac{d^2 y}{dx^2} = x \cdot e^x$ is				
(A) $y = xe^x - 2e^x + 4x + c_2$	(B) $y = xe^{x} + 4x + c_{2}$	(C) $y = xe^x + 4x^2 + c_2$	(D) $y = xe^{x} + 3e^{x} + 4x + c_{2}$	
28 The partial integral of the differential equation $f(d)y = x$ is found by the formula				
$(A) P.L = \frac{1}{f} (D) x$	$P.L = \frac{1}{f}(D) y$	$P.I. = \frac{1}{D^2}x$	(D) None of these	
²⁹ The integrating factor of linear equation $(x+1)\frac{dy}{dx} - ny = e^{x}(x+1)^{n+1}$				
(A) $(x+1)^n$	(B) $(x+1)^{-n}$	(C) (x+1)	(D) $(x+1)^2$	
${}^{30} \frac{1}{f(\Theta)} x^m$				
(A) $\frac{1}{m}x^m$	(B) $\frac{1}{f(m)}x^m$	(C) $\frac{1}{f(-m)}x^m$	(D) $\frac{1}{f(m^2)}x^m$	
m	f(m)	f(-m)	$f(m^2)$	

A70200B46FE385FA59735735640D11CB