Examination October 2020

B.Sc. F.Y (Sem-I)

2161 Mathematics MAT - 101 Differential Calculus

Time: One Hour			Max. Marks: 50		
Instructions					
 Solve any 25 questions from 	om Q1 to Q30				
Solve any 25 questions fro	om Q31 to Q60				
1 Let f be a function from set A inte	o set B then range of F is				
(A)Set A	(B)Set B	(C)Set of all function values	(D)Domain		
2 Let a be any given number then	function f(x) = a $\forall x \in R$ is called				
(A)One-one function	(B)Constant function	(C)Identity function	(D)None of these		
3 Let two functions f(x)=x ² ,g(x)=sinx					
	g is $[0,\infty]$ then (g o f)(x)=	$x \in R$			
(A)Sin x ²	$(B)(\sin x)^2$	$(C)x^{2}$ + sin x	(D)x ² sin x		
$4 \lim_{x \to 1} \frac{(x^2 - 1)}{x - 1} = _$	(=)(=,)				
(A)1	(B)2	(C) [∞]	(D) ^{-∞}		
5 F is said to have a removale disc	continuity if				
(A) $\lim_{x \to c} f(x) \neq f(c)$	(B) $\lim_{x \to c+0} f(x) \neq \lim_{x \to c-0} f(x)$	(C) _{Neither of $\lim_{x \to c=0} f(x)$ and $\lim_{x \to c+0} f(x)$}	(D)None of these		
6 If f(x)= then $f(x)=\sqrt{x}$, the	en f(x) = x > 0				
(A) \sqrt{x}	(B) $2\sqrt{x}$	(C) $\frac{1}{\sqrt{x}}$	(D) $\frac{1}{2\sqrt{x}}$		
7 Which of the following statement	t is correct	(A	214		
(A)If F is finitely derivable at C ,ther is also continuous at C.	n F (B)lf F is continuous at C ,then F is also finitely derivable.	(C)Both A and B is correct.	(D)None of these		
8 The function f(x) = x-2 + x + x+2	is derivable at				
(A)-2 9 Sin hx=, <i>x</i> ∈ <i>R</i>	(B)0	(C)2	(D)None of these		
(A) $\frac{e^x - e^{-x}}{2}$	(B) $\frac{e^{x} + e^{-x}}{2}$	(C) $\frac{2}{e^x + e^{-x}}$	(D) $\frac{2}{e^x - e^{-x}}$		
10 $\frac{d}{dx}$ tan hx =, $x \in R$					
(A)Tan hx sechx	(B)Sec hx	(C)Sec h ² x	(D)Cot hx		
¹¹ If y=(ax+b) ^m the $\frac{d^n y}{dx^n}$ =					
(A) $\frac{m!}{(m-n)!}a^n(ax+b)^{m-n}$	(B) $\frac{m!}{(m+n)!}a^n(ax+b)^{m-n}$	(C) $\frac{m!}{(m-n)!}a^n(ax+b)^{m+n}$	(D) $\frac{m!}{(m+n)!}a^n(ax+b)m+n$		
¹² If y=sin(ax+b),then $\frac{d^n}{dx^n}$ sin(ax+b)=					
(A) $\sin(ax+b+\frac{n\pi}{2})$	(B) $\cos(ax+b+\frac{n\pi}{2})$	(C) $a^n \sin(ax+b+\frac{n\pi}{2})$	(D) $a^n \cos(ax+b+\frac{n\pi}{2})$		
13 Leibnitz's theorm is the n th deriv	vative of the of two function.				
(A)Sum	(B)Subtraction	(C)Product	(D)None of these		
14 A function f is(i) continuous in clo that f(c)=0.	osed interval [a,b](ii) derivative in the op	en interval]a,b[and (iii)f(a)=f(b) then the	re exist value of c in]a,b[such		
(A)At the most value	(B)At least value	(C)No point	(D)Every point		
	function $f(x)=x(x+3)^{-x/2}$ in [-3,0] then the	e satisfying point in]-3,0[is			
(A)-2	(B)2	(C)3	(D)-3		
16 If $f(x,y)=(x^{y}+y^{x})$ then domain for					
$(A)\{(x,y): 0 < x, 0 < y\}$	$(B)\{(x,y): x < 0, y < 0\}$	$(C){(x,y):0 < x,y < 0}$	$(D){(x,y):x < 0,0 < y}$		
17 If f is continuous at a point if and only if (A)The limit of the function > value of (B)The limit of the function < value of (C)The limit of the function \neq value (D)The limit of the function = value of					
(A) I he limit of the function > value (the function	of (B) I he limit of the function < value of the function	f (C)The limit of the function ≠ valu of the function	e (D) The limit of the function = value of the function		

Examination October 2020

18 f _y (x,y)=				
(A)	(B) $\lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$	(C) $\lim_{h \to 0} \frac{f(x+h, y+h) - f(x, y)}{h}$	(D) $\lim_{h \to 0} \frac{f(x-h, y)}{h}$	
¹⁹ If z = tan ⁻¹ (x+y) then $\frac{\partial z}{\partial x} =$				
(A) $\frac{1}{(x+y)}$	(B) $\frac{1}{(x+y)^2}$	(C) $\frac{1}{1+(x+y)^2}$	(D) $\frac{1}{x^2 + y^2}$	
²⁰ If z=e ^{x-y} then $\frac{\partial^2 z}{\partial x \partial y} = \dots$				
(A)e ^{x+y}	(B)-e ^{X-y}	(C)-e ^{X+y}	(D)e ^{X-y}	
21 Neighbourhood of a point (a,b) in a plane is				
(A)Interval	(B)Reactangle	(C)Circle	(D)Sphere	
22 The scalar product of any two vectors is knows as				
(A)Cross product	(B)Dot product	(C)Direct product	(D)Vector product	
23 Scalar product of two non zero vector is zero if $ heta $ is angle.				
(A)Acute	(B)Right	(C)Obtuse	(D)None of these	
24 If the a, b be two non zero vector and they satisfy the property a.b=b.a then this property is known as				
(A)Commutativity	(B)Distributivity	(C)Associvibity	(D)Reflexivity	
25 If the a,b and c be the three non a $.(b + c) = a.b + a.c$	zero vector and they satisfy the propert	у.		
(A)Commutativity	(B)Distributivity	(C)Associvibity	(D)Reflexivity	
26 If i,j,k are three mutually perpendicular unit vector then which product s not correct.				
(A) $i \times j = -k$	(B) $j \times i = -k$	(C) $j \times k = i$	(D) $k \times j = -i$	
27 If the a,b and c be the three non zero vectors taken in this order then the scalar triple product is given by				
(A) $a \times b \times c$	(B) <i>a</i> × <i>b</i> . <i>c</i>	(C)a.b.c	(D)None of these	
28 Volume of the parallelpiped whose coterminous edges are 2i-3j+k,i-j+2k and 2i+j-k is				
(A)11 units	(B)12 units	(C)14 units	(D)15 units	
29 The vector valued point function ,then the range set of contain only				
(A)Scalar points	(B)Vector points	(C)Both A and B	(D)None of these	
30 div $(\phi f) =$				
(A)	(B) ♦ Div f + f. grad ♦	(C)f div	(D)None of this	