Examination October 2020

B.Sc. T.Y (Sem-V)

2187_2 Mathematics MAT-504 2) Ordinary Differential Equation -I

Time: One Hour Max. Marks: 25

Instructions

Solve any 25 questions from Q.1 to Q.30

1 The value of $\frac{1+i}{1-i} = \dots$

(A)i (B)–i (C)i (D)None of these

2 The modulus of a complex number z = x + iy is

(A) $x^2 + y^2$ (B) $\sqrt{x^2 + y^2}$ (C) $\sqrt{x^2 - y^2}$ (D)None of these

3 If $r=a+ib\neq 0$, where a, b are real then $(e^{rx})'=....$

(A) e^{rx} (B) e^x (C) \Re^{rx}

4 If r is such that $r^3=1$ and $r\neq 1$ then $r^2+r+1=...$

(A)1 (B)Zero (C)-1 (D)None of these

5 The power series expansion for $\sin(\theta) =$

(A) $1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots$ (B) $\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} = \dots$ (C) $1 + \frac{\theta^2}{2!} + \frac{\theta^3}{3!} + \dots$ (D) None of these

6 The solution of the differential equation $y1 + \cos x$. y = 0 is

(A) $\mathscr{D}(x) = e^{-sinx}$ (B) $\mathscr{D}(x) = e^{sinx}$ (C) $\mathscr{D}(x) = e^{cosx}$ (D)None of these

7 $\mathcal{D}(x) = \sin 2x$ Is a solution of the differential equation

(A) $y^1 + 2y = 0$ (B) $y^{11} - y^1 = 0$ (C) $y^{11} + 4y = 0$ (D)None of these

8 The solution of the differential equation $v^1 + v = e^x$ is

(A) $\mathscr{D}(x) = \frac{e^x}{2} + ce^x$ (B) $\mathscr{D}(x) = \frac{e^{-x}}{2} + ce^{-x}$ (C) $\mathscr{D}(x) = \frac{e^x}{2} + ce^x$ (D) None of these

9 The solution of the differential equation $y^1 + cosx y = sinx cosx$ is

(A) $\mathscr{D}(x) = (\sin x + 1) + ce^{\sin x}$ (B) $(\sin x - 1) + ce^{\cos x}$ (C) $\mathscr{D}(x) = (\sin x - 1) + ce^{\sin x}$ (D) None of these

10 If $\mathcal{B}(x)=-ix+1+e^{ix}$ is a solution of y^1 + iy = x, then $\mathcal{B}(\pi)=....$

(A) $-(\pi)i$ (B) $(\pi)i$ (C)1 (D)None of these

11 If \mathscr{B}_1 , \mathscr{B}_2 , are two solutions of L(y) = 0 on an interval I containing a point x0 then $w(\mathscr{B}_1,\mathscr{B}_2)(x) = \dots$

(A) $e^{a_1(x-x_0)}w(\mathfrak{A}_1,\mathfrak{A}_2)(x)$ (B) $e^{-a_1(x-x_0)}w(\mathfrak{A}_1,\mathfrak{A}_2)(x)$ (C) $e^{-a_1(x-x_0)}w(\mathfrak{A}_1,\mathfrak{A}_2)(x_0)$ (D)None of these

12 The solutions $\mathcal{O}_1(x) = \cos x$, $\mathcal{O}_2(x) = \sin x$ are

(A)Linearly independent (B)Linearly dependent (C)Same (D)None of these

13 All solutions of the equation $y^{11} + y^1 - 2y = 0$ are riven by

(A) $\mathscr{Q}(x) = c_1 e^{-2x} + c_2 e^x$ (B) $c_1 e^{2x} + c_2 e^{-x}$ (C) $\mathscr{Q}(x) = c_1 e^{-2x} + c_2 e^{-x}$ (D) None of these

14 The linearly independent solutions of the equation $y^{111} - 3y^1 + 2y = 0$ are

(A) e^{-x} , xe^{x} , e^{2x} (B) e^{x} , xe^{x} , e^{-2x} (C) e^{x} , xe^{-x} , e^{-2x}

15 If \mathcal{M}_1 , $\mathcal{M}_2 = e^{2x}$, $\mathcal{M}_3 = e^{-2x}$ then $w(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)(x)$ is

(A)0 (B)1 (C)16 (D)None of these

16 The roots of $Z^2=2$ are

(A) $\sqrt{2}$ (B)sqrt -2 (C) $\pm \sqrt{2}$ (D)None of these

17 If $F(x)=(5x^2-1)+3ix$ then F'(x)=....

(A) 10x (B) 10x + 3i (C) x + 3i (D) None of these

18 A complex number r is called the root of P if

(A) $P(r) \neq 0$ (B)P(r) = 1 (C)P(r) = 0 (D)None of these

19 If $\mathcal{O}(x)=e^{rx}$, where r is a complex constant and x is a real then $\mathcal{O}'(x)-r\mathcal{O}(x)=....$

(A)0 (B)1 (C)r (D)None of these

20 Consider the system of equations

 $iz_1 + z_2 = 1 + i$ $2z_1 + (2-i)z_2 = 1$

Then the determinant of the coefficients $\Delta =$

(A)2i – 1 (B)2i + 1 (C)2 (D)None of these

Examination October 2020

21 All solutions of $v^1 = kv$ are of the form

(A)
$$\mathcal{O}(x) = e^{kx}$$

(B)
$$\mathcal{O}(x) = ce^{kx}$$

(C)
$$\emptyset(x)=ce^{-kx}$$

(D)None of these

22 The solution of the differential equation $y^1-2y=1$ is

(A)
$$\mathscr{O}(x) = \frac{1}{2} - ce^{2x}$$

(B)
$$\mathscr{O}(x) = \frac{1}{2} + ce^{-2x}$$

(C)
$$\mathscr{O}(x) = \frac{-1}{2} + ce^{2x}$$

(D)None of these

23 Solutions of the differential equation $3y^1 + y = 2e^{-x}$ is

(A)
$$\mathcal{O}(x) = e^{-x} + ce^{-x/3}$$

(B)
$$\mathcal{O}(x) = -e^{-x} + ce^{-x/3}$$

(C)
$$\emptyset(x) = e^x + ce^{x/3}$$

(D)None of these

24 The solution of the differential equation y^{11} + 4y=0 is

(A)
$$v = e^{2x}$$

(B)
$$y=e^{ix}$$

(C)
$$y=e^{2ix}$$

(D)None of these

25 The solution of the differential equation $y^1 = e^{3x} + sinx$ on $-\infty < x < \infty$ is

(A)
$$\mathcal{O}(x) = e^{3x} - \cos x + c$$

(B)
$$\mathcal{O}(x) = \frac{e^{3x}}{2} + \cos x + c$$

(B)
$$\mathscr{O}(x) = \frac{e^{3x}}{3} + \cos x + c$$
 (C) $\mathscr{O}(x) = \frac{e^{3x}}{3} - \cos x + c$

(D)None of these

26 The solution of the differential equation $y^{11} - y^{1} = 0$ is

(A)
$$\mathcal{O}(x) = e^x$$

(B)
$$\mathcal{O}(x) = \cos x$$

(C)
$$\mathcal{O}(x) = \sin x$$

(D)None of these

27 The solution of the initial value problem $y^{11}-2y^1-3y=0$ is

(A)
$$\mathcal{O}(x) = c_1 e^{3x} + c_2 e^{-x}$$

(B)
$$\Re(x) = c_1 e^{-3x} + c_2 e^{-3x}$$

(B)
$$\mathscr{D}(x) = c_1 e^{-3x} + c_2 e^x$$
 (C) $\mathscr{D}(x) = c_1 e^{-3x} + c_2 e^{-x}$

(D)None of these

28 All solutions of the equation $y^{11} + 16y = 0$ are given by

(A)
$$\mathcal{O}(x) = c_1 e^{4x} + c_2 e^{-4x}$$

(B)
$$c_1 e^{4ix} + c_2 e^{-4ix}$$

(C)
$$\mathcal{O}(x) = c_1 e^{4x} + c_2 e^{4x}$$

29 The characteristic polynomial of the differential equation $L(y) = y^{11} + a_1 y^1 + a_2 y = 0$, where a1, a2, are constants is given by

(A)
$$P(r)=r^2+a_1+a_2$$

(B)
$$P(r)=r^2+a_1r+a_2$$

(C)
$$P(r) = a_1 r + a_2$$

30 Two linearly independent solutions of the equation $4y^{11}-y=e^x$ are

(A)
$$e^{x/2}$$

(B)
$$e^x$$
 , e^{-x}

(C)
$$e^{x}$$
 , $e^{x/2}$

(D)None of these