Examination October 2020

B.Sc. T.Y (Sem-V)

2152 Physics Paper- XVI(Electrodynamics)

		· Xvi(Liectiouynamics)				
Time: One Hour			Max. Marks: 50			
Instructions Solve any 25 questions from Q1 to Solve any 25 questions from Q31 to						
1 'The total outward electric flux through a closed surface is directly proportional to the net charge enclosed by that surface.' This is the statement oflaw.						
(A)Coulomb's	(B)Faraday's	(C)Gauss's	(D)Lenz's			
2 Which one of the following is Poiss						
(A) $\nabla^2 \Psi = 0$	(B) $E = -\nabla \Psi$	(C) $\nabla = \rho/\epsilon_0$	(D)None of the above			
3 Electric lines of forces for a positive	e charge are directed in the	direction.				
(A)Outward	(B)Inward	(C)Both outward and inward	(D)No direction			
4 $\vec{\nabla} \vec{E} = \frac{\rho}{\epsilon_0}$ is the						
(A)Stoke's Theorem	(B)Gauss's law	(C)Greens Theorem	(D)Coulomb's Law			
5 Which one of the following is not a	property of electric field line?					
(A)Lines of force start from positive charge and terminate on negative charge.	(B)Direction of electric field lines is same for positive and negative charges.	(C)The field intensity is proportional to the number of lines passing throug unit area held normal to the local field direction.				
6 Electric field intensity is a	quantity.					
(A)Scalar	(B)Algebraic	(C)Numerical	(D)Vector			
7 Gaussian surface of a point charge						
(A)Sphere	(B)Cylinder	(C)Cube	(D)Hexagonal			
	shell of uniform surface charge density					
(A)Constant9 The magnitude of electric field 'E' i	(B)Positive	(C)Zero	(D)Negative			
(A) $E = \frac{q l q 2}{4 \pi \epsilon_0 \Gamma^2}$	(B) $E = \frac{F}{a}$	(C) $E = q \epsilon_0$	(D) $E = Fq$			
-	1					
	e 'x', the solution of Laplace equation is $\nabla = -$					
(A) $\nabla \Psi = 1$	(B) $\nabla \bullet E = q \epsilon_0$	(C) $\Psi(x) = ax = b$	(D)None of the above			
	a unit positive charge placed at that poin					
(A)Gravitational field	(B)Magnetic field	(C)Electromagnetic field	(D)Electric field			
12 "Gaussian pillbox" extending equal						
(A)Above the plane	(B)Above and Below the plane	(C)Below the plane	(D)None of the above			
13 Henry is the unit of		(C) Path A and P				
(A)Self inductance14 Whenever an e.m.f. and current is This is known as	(B)Mutual Inductance set up by a charge of magnetic flux thro	(C)Both A and B bugh a circuit its direction will be such a	(D)Frequency s to oppose the act which caused it.			
(A)Coulomb's Law	(B)Faradays Law	(C)Kirchhoff's Law	(D)Lenz's law			
15 Whenever there is change in the m	nagnetic flux linked with a circular coil, a	an e.m.f. will be induced in the coil. This	is known as			
(A)Coulomb's Law	(B)Faradays Law	(C)Kirchhoff's Law	(D)Lenz's law			
16 If the induced emf is ϵ' , then Faraday's law is						
$ ^{(A)} \epsilon = \frac{d \phi}{dt} $	$ ^{(B)} $	$^{(C)} \epsilon = \frac{dE}{dt}$	(D) $\epsilon = \nabla \times E$			
17 Magnitude of induced emf is proportional to						
(A)Rate of change of current	(B)Rate of change of voltage	(C)Rate of change of magnetic flux linkage	(D)Rate of change of resistance.			
¹⁸ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ is the exter	nsion of					
(A)Faraday's law	(B)Coulomb's law	(C)Gauss Law	(D)Ampere's law			
19 The equation $ abla^2 u \!=\! 0 $ is calle	d as,					
(A)Green's function	(B)Poisson's equation for free space	(C)Gauss equation	(D)Laplace's equation for free space			
20 With boundary conditions Laplace'	s equation had					
(A)Only one solution.	(B)Two solutions	(C)Three solutions	(D)Four solutions			
21 An imaginary surface enclosing the	e charge is known as					

Examination October 2020

(A)Laplacian Surface	(B)Colombian Surface	(C)Gaussian Surface	(D)Ampere's surface
22 Lenz's law is a consequence of		(C)Gaussian Sunace	(D)Ampère's surface
(A)Charge		(C)Momentum	(D)Density
23 A rate of flow of charge per unit	(B)Energy	(C)Momentum	(D)Density
(A)Voltage	(B)Power	(C)Current	(D)Resistance
24 ransformers works on the princi		(O)ourient	
(A)Self inductance	(B)Mutual inductance	(C)Displacement current	(D)Joule's law
25 Electromagnetic waves travels			
(A)Without medium	(B)With medium	(C)Both A and B	(D)In disturbed path
	of induced emf in the same circuit is called	. ,	(_) ==================================
(A)Self inductance	(B)Mutual inductance	(C)Eddy current	(D)None of the above
27 Electromagnetic waves are			
(A)Polarized	(B)Longitudinal	(C)Both A and B	(D)Transverse
28 Energy of electromagnetic wave	es divided equally intofield ve	ctors.	
(A) $\vec{E} \times \vec{B}$	(B) $\vec{E} \times \vec{D}$	(C) $\vec{B} \times \vec{D}$	(D) $C \times \vec{E}$
29 Which of the following equation	shows modified Ampere's law.		
(A) $\nabla \vec{m} = p$	^(B) $\nabla \vec{H} = \vec{J} + \frac{\partial \vec{v}}{\partial t}$	(C) $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	(D) $\nabla \times \vec{r} = \partial \vec{v}$
	$\nabla H = J + \frac{1}{\partial t}$	$V \times H = J + \frac{1}{\partial t}$	$ (D) \nabla \times \vec{E} = -\frac{\partial \vec{v}}{\partial t} $
30 Which of the following shows di	fferential form of Ampere's circuital law.		
(A) $\nabla \times \vec{H} = 0$	(B) $\nabla \times \vec{H} = \vec{J}$	(C) $\nabla \times \vec{H} = \frac{\rho}{\epsilon_0}$	(D) $\nabla \times \vec{E} = \rho \epsilon_0$
() () () ()		$\nabla \nabla \nabla \nabla T = \epsilon_0$	() () () = p c ₀
	fferential form of Ampere's circuital law. T	he mutual inductance between two coil	s P and S is 10 Henry. The current is P
change at 2 amp/sec. The induc		(0)5	
(A)2	(B)10	(C)5	(D)20
32 The unit of Poynting vector is			
(A)Watt	(B)Watt/s	(C)Watt/m2	(D)Watt/m
33 Which of the following circuit op (A)Capacitance	(B)Inductance	(C)Resistance	(D)Conductor
	h a counter emf is induced in it when the		
(A)Self inductance	(B)Mutual inductance	(C)Capacitance	(D)Resistance
	area or power flow per unit area is		
the face of energy now per anic			
(A) $\vec{F} \times \vec{R}$			(D) $\vec{D} \times \vec{H}$
(A) $\vec{E} \times \vec{B}$	(B) $\vec{E} \times \vec{D}$	(C) $\vec{E} \times \vec{H}$	(D) $\vec{D} \times \vec{H}$
36 Gauss law can be evaluated by	(B) $\vec{E} \times \vec{D}$ using the following system.	(C) $\vec{E} \times \vec{H}$	
36 Gauss law can be evaluated by (A)Cartesian	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface	(C) $\vec{E} \times \vec{H}$ (C)Charge type	(D) $\vec{D} \times \vec{H}$ (D)None of the above
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displac	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface ement current densities coexist in which	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium?	(D)None of the above
36 Gauss law can be evaluated by (A)Cartesian	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium?	
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displac (A)Only conductors in air	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium?	(D)None of the above ts (D)Conductors placed in any dielectric
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displac	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium?	(D)None of the above ts (D)Conductors placed in any dielectric
36 Gauss law can be evaluated by(A)Cartesian37 Both the conduction and displace(A)Only conductors in air38 Which parameter is unity in air n	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist	(D)None of the above ts (D)Conductors placed in any dielectric medium.
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air m (A)Permittivity 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist	(D)None of the above ts (D)Conductors placed in any dielectric medium.
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air in (A)Permittivity 39 Gauss law for magnetic fields is 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability given by, (B)Div(B)=0	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air n (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability given by, (B)Div(B)=0	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air m (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability s given by, (B)Div(B)=0 ent exist in electromagnetic wave?	 (C) <i>E</i>×<i>H</i> (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H 	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air m (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H	 (C) <i>E</i>×<i>H</i> (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H 	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air m (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface sement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H metic induction \vec{B} isacros	 (C) <i>E</i>×<i>H</i> (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H as the boundary. (C)Discrete 	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated and the following is gener	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous al electromagnetic wave equation for elect	 (C) <i>E</i>×<i>H</i> (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H so the boundary. (C)Discrete tric field in conducting medium. 	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above
 36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air m (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H metic induction \vec{B} isacross (B)Discontinuous	 (C) <i>E</i>×<i>H</i> (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H as the boundary. (C)Discrete 	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A) $\nabla \times E = \frac{-\partial B}{\partial t}$	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous al electromagnetic wave equation for elect	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H so the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A) $\nabla \times E = \frac{-\partial B}{\partial t}$	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability is given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H metic induction \vec{B} isacross (B)Discontinuous al electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H so the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A) $\nabla \times E = \frac{-\partial B}{\partial t}$ 43 In case of reflection the angle of (A)Incidence	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability is given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous It electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) ∫ E. dl=0
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A) $\nabla \times E = \frac{-\partial B}{\partial t}$ 43 In case of reflection the angle of (A)Incidence	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous II electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction	 (D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) ∫ E. dl=0
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A)Continuous 42 Which of the following is generated (A) $\nabla \times E = \frac{-\partial B}{\partial t}$ 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave rematication	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability is given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous II electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H so the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction (C)Reflection or refraction	(D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) $\int E \cdot dl = 0$ (D)Transmission
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A)Continuous 42 Which of the following is generated (A)Continuous 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave remain (A)Reflection or polarization 45 The incident, reflected, refracted (A)Different	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous Il electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or (B)Refraction or dispersion d waves all lie in theplane bi (B)Same	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Relative permeability (C)Div(D)=0 (C)Both E and H ss the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction (C)Reflection or refraction ut normal to the boundary surface. (C)Normal	(D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) $\int E \cdot dl = 0$ (D)Transmission
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A)Continuous 42 Which of the following is generated (A)Continuous 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave remain (A)Reflection or polarization 45 The incident, reflected, refracted (A)Different	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous al electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or (B)Refraction or dispersion d waves all lie in theplane bi	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Relative permeability (C)Div(D)=0 (C)Both E and H ss the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction (C)Reflection or refraction ut normal to the boundary surface. (C)Normal	(D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) $\int E \cdot dl = 0$ (D)Transmission (D)Transmission
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A)Continuous 42 Which of the following is generated (A)Continuous 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave remain (A)Reflection or polarization 45 The incident, reflected, refracted (A)Different	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous Il electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or (B)Refraction or dispersion d waves all lie in theplane bi (B)Same	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Relative permeability (C)Div(D)=0 (C)Both E and H ss the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction (C)Reflection or refraction ut normal to the boundary surface. (C)Normal	(D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) $\int E \cdot dl = 0$ (D)Transmission (D)Transmission
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A)Continuous 42 Which of the following is generated (A)Continuous 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave remains (A)Reflection or polarization 45 The incident, reflected, refracted (A)Different 46 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (A)Snell's	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability is given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous all electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or (B)Refraction or dispersion d waves all lie in theplane bi (B)Same represents thelaw of reflection	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H ss the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction (C)Reflection or refraction ut normal to the boundary surface. (C)Normal effection. (C)Ampere's	(D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) $\int E \cdot dl = 0$ (D)Transmission (D)Transmission (D)All the above
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magnetic (A)Continuous 42 Which of the following is generated (A)Continuous 42 Which of the following is generated (A)Continuous 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave remains (A)Reflection or polarization 45 The incident, reflected, refracted (A)Different 46 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (A)Snell's	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface cement current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability e given by, (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous all electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or (B)Refraction or dispersion d waves all lie in theplane bi (B)Same represents thelaw of re (B)Brewster's	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H ss the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Reflection or refraction ut normal to the boundary surface. (C)Normal effection. (C)Ampere's	(D)None of the above (D)Conductors placed in any dielectric medium. (D)Absolute permittivity (D)Curl(B)=0 (D)None of the above (D)All the above (D) $\int E \cdot dl = 0$ (D)Transmission (D)Transmission (D)All the above
36 Gauss law can be evaluated by (A)Cartesian 37 Both the conduction and displace (A)Only conductors in air 38 Which parameter is unity in air of (A)Permittivity 39 Gauss law for magnetic fields is (A)Div(E)=0 40 Which of the following component (A)Only E 41 The normal component of magn (A)Continuous 42 Which of the following is generat (A) Continuous 42 Which of the following is generat (A) Continuous 42 Which of the following is generat (A) $\nabla \times E = \frac{-\partial B}{\partial t}$ 43 In case of reflection the angle of (A)Incidence 44 The frequency of the wave remains (A)Reflection or polarization 45 The incident, reflected, refracted (A)Different 46 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (A)Snell's 47 Which component of the electric (A)Tangential	(B) $\vec{E} \times \vec{D}$ using the following system. (B)Gaussian surface the ment current densities coexist in which (B)Only dielectrics in air medium? (B)Permeability (B)Permeability (B)Div(B)=0 ent exist in electromagnetic wave? (B)Only H netic induction \vec{B} isacross (B)Discontinuous I electromagnetic wave equation for elect (B) $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} = 0$ f reflection is equal to the angle of (B)Reflection ains unchanged by or (B)Refraction or dispersion d waves all lie in theplane bi (B)Same represents thelaw of re (B)Brewster's to field intensity is always continuous at the	(C) $\vec{E} \times \vec{H}$ (C)Charge type medium? (C)Both the densities can never exist (C)Relative permeability (C)Div(D)=0 (C)Both E and H so the boundary. (C)Discrete tric field in conducting medium. (C) $\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$ (C)Refraction (C)Reflection or refraction ut normal to the boundary surface. (C)Normal sflection. (C)Ampere's e boundary?	(D)None of the above(D)Conductors placed in any dielectric medium.(D)Absolute permittivity(D)Curl(B)=0(D)None of the above(D)All the above(D) $\int E \cdot dl = 0$ (D)Transmission(D)All the above(D)Transmission(D)All the above(D)Transmission(D)All the above(D)Transmission(D)All the above(D)All the above(D)Newton's

Examination October 2020				
(A) $\int D.dl = 0$	(B) $\int H.dl = 0$	(C) $\int \mathbf{B} \cdot d\mathbf{l} = 0$	(D) $\int E.dl = 0$	
⁴⁹ Equation $\vec{\nabla} \times \vec{S} + \frac{\partial U}{\partial t} =$	0 shows,			
(A)Equation of continuity	(B)Current density	(C)Poynting theorem	(D)Stokes theorem	
50 Which of the following is not	a type of polarization.			
(A)Linear Polarization	(B)Elliptical Polarization	(C)Circular Polarization	(D)Triangular Polarization	
51 The Gaussian pillbox is the	surface with an infinite charge or unif	orm charge density is used to determine.		
(A)Magnetic field	(B)Refractive index	(C)Electric field	(D)Electric current	
52 The ratio of amplitudes of el	ectric (E) and magnetic (B) fields is a	lways constant and		
it is equal to of	electromagnetic wave.			
(A)Intensity	(B)Velocity	(C)Frequency	(D)Wavelength	
53 Electromagnetic waves trave	els in vacuum with velocity			
(A) $3 \times 10^8 m/s$	(B) 3×10 ¹⁰ m/s	(C) 300m/s	(D) $3 Times 10^8 cm/s$	
54 Which one of the following is	s not a Maxwell's equation.			
(A) $\nabla . D = \rho$	(B) $\nabla . B = 0$	(C) $\nabla \times E = \frac{-\partial B}{\partial t}$	(D) $\nabla . D = \epsilon_0 E$	
55 When variation of electric ar	nd magnetic fields are restricted to a	single plane then		
the electromagnetic wave is	-	0.1		
(A)Reflected wave	(B)Radiated wave	(C)Plane polarized wave	(D)None of the above	
56 Electromagnetic waves trans	sfer from one region to an	other.		
(A)Charge	(B)Current	(C)Voltage	(D)Energy	
57 The tangential component o	f magnetic intensity H is	across the surface separating two di	electrics.	
(A)Discontinuous	(B)Continuous	(C)Linear	(D)Circular	
58 Electromagnetic waves are	produced by			
(A)Electric current	(B)A static charge	(C)An accelerated charge	(D)Voltage	
59 In electromagnetic waves th	e phase difference between electric f	ield vector E and		
magnetic field vector \vec{B}	is,			
(A) $\frac{\pi}{2}$	(B) ^π	(C) $\frac{2\pi}{3}$	(D)Zero	
60 Which of the following rays a	are not electromagnetic waves?	5		
(A)Alpha rays	(B)Gamma rays	(C)X-rays	(D)Thermal rays	

A4EA6C12EC6F565C990987D95676590A