Examination October 2020

B.Sc. T.Y (Sem-V)

2165 Mathematics MAT - 501 Real Analysis - I

Time: One Hour

Instructions :

Solve any 25 questions from Q 1 to Q 30

1 lff:A ➔ BandifX⊂A,Y⊂	$A = f(X \cup X) =$			
(A)f(X) ∪f(Y)	$(B)f(X \cap Y)$	(C)f (X) ∩f (Y)	(D)None of these	
2 If $f(x) = \log x (0 < x < \infty)$ then the ra				
(A)0 <x<∞< td=""><td>(B)0</td><td>(C)0 ≤x<∞</td><td>(D)0 ≤x≤∞</td></x<∞<>	(B)0	(C)0 ≤x<∞	(D)0 ≤x≤∞	
3 If A and B are subsets of X then	<i>x</i> _{A∩B} =			
(A)Max (x_A, x_B)	(B)Min (x_A, x_B)	(C)1	(D)0	
4 The set of all algebraic number is				
(A)countable	(B)uncountable	(C)both countable and uncountable	(D)neither countable nor uncountable	
5 If A = $\{5,6,7,8\}$ then the upper boundary ≥ 5		$\langle C \rangle_{\text{even}} \rightarrow 0$		
(A) every $x \ge 5$ 6. If $A = [0, 1]$ and $B = [1, 2]$. Let $f(x)$	(B)8 $f^{-1}(A \cap B) =$	(C)every x ≥ 8	(D)every x ≤ 8	
6 If A = $[0, 1]$ and B = $[1, 2]$. Let f (x)	(B)[1, e^2]		(D)none of these	
(A)[0,2] 7 If A is nonempty subset of r that is	رص) ا , و) bounded below then A has a greatest ا	(C)[1, e] lower bound in R" This axiom is called		
(A)least upper bound axiom	(B)greatest lower bound axiom	(C)bounded axiom	(D)none of these	
. ,	of non-negative numbers and if $\lim_{n \to \infty}$			
(A)L < 0	(B)L = 0	(C)L ≥ 0	(D)None of these	
9 A nonincreasing sequence which				
(A)convergent	(B)diverges to infinity	(C)neither convergent nor divergent	(D)diverges to minus infinity	
10 If $\{s_n\}_{n=1}^{\infty}$ is a Cauchy seq	puence of real numbers then $\{s_n\}$	₂₀ n=1 is		
(A)convergent	(B)divergent	(C)not bounded	(D)none of these	
¹¹ $\lim_{n \to \infty} (1 + \frac{2}{n})^n$ is				
(A)e	(B) <u>1</u>	(C)1	(D) e^2	
	e			
12 Every bounded sequence				
(A)is convergent	(B)is oscillatory	(C)has a convergent subsequence	(D)none of these	
13 The sequence $\{(-1)^n\}_{n=1}^\infty$ is	;			
(A)convergent	(B)not bounded	(C)bounded	(D)none of these	
¹⁴ If sn = { 1, -1 1, -2, 1, -3,}, then	$\lim_{n \to \infty} \inf s_n = \underline{\qquad}$			
(A) ^{-∞}	(B)- 1	(C)1	(D) [∞]	
¹⁵ $\lim_{n \to \infty} \frac{2n^3 + 5n}{4n^3 + n^2} =$				
(A)1	(B)2	(C)1/2	(D)4	
	$, \text{ if } \{\mathbf{S}_n\}_{n=1}^{\infty} \text{ converges to}$			
(A)0	(B)L	- (C)1	(D) [∞]	
	\mathbf{s}_{n-1} then the value of $\mathbf{s}_5 = $			
(A)2	(B)3	(C)8	(D)5	
18 If $\sum_{n=1}^{\infty} a_n$ is a convergent set				
(A)1	(B)0	(C)L	(D) [∞]	
¹⁹ The $\sum_{n=1}^{\infty} \frac{1}{n}$ is				
(A)convergent	(B)bounded	(C)divergent	(D)not bounded	
²⁰ If $x \ge 1$, then the series \sum	[∞] _{n=0} X ⁿ is			
(A)Converges	(B)diverges	(C)Diverges to 1 - x	^(D) Converges to $\frac{1}{1-x}$	
21 If $\{a_n\}_{n=1}^{\infty}$ is a non increasing sequence of positive numbers and $\lim_{n \to \infty} a_n = 0$ then the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is				

Max. Marks: 25

Examination October 2020

(A)Convergent	(B)Divergent	(C)Both (a) and (b)	(D)Conditionally convergent		
22 The partial sum of the series $1 - 1 + 1 - 1 + + (-1)^{n+1} +$, when n is odd , is					
(A)1	(B)0	(C)-1	(D)n		
23 $\sum_{n=1}^{\infty} a_n$ Converges conditionally if					
(A) $\sum_{n=1}^{\infty} a_n$ Converges	(B) $\sum_{n=1}^{\infty} a_n $ Converges but	(C) $\sum_{n=1}^{\infty} a_n$ diverges	(D) $\sum_{n=1}^{\infty} a_n$ Converges to A and		
	$\sum_{n=1}^{\infty} a_n$ diverges		$\sum_{n=1}^{\infty} a_n $ diverges		
24 If $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B then $\sum_{n=1}^{\infty} (a_n - b_n)$ converges to					
(A)A	(B)B	(C)A + B	(D)A - B		
25 If $u = x + y$ and $v = x - y$ then the value of J (u, v) =					
(A)0	(B)-2	(C)2	(D)1		
The value of $\frac{\partial(y_1, y_2, \dots, y_n)}{\partial(x_1, x_2, \dots, x_n)} \times \frac{\partial(x_1, x_2, \dots, x_n)}{\partial(y_1, y_2, \dots, y_n)}$					
(A)0	(B)1	(C)2	(D)3		
$ \begin{array}{c} 27 \\ \text{If} u_1, \dots, u_2, \dots, u_n \end{array} \text{ are functions of n independent variables } x_1, x_2, \dots, x_n \\ \text{ and if } F(u_1, u_2, \dots, u_n) \\ = \text{othen } \frac{\partial(u_1, u_2, \dots, u_n)}{\partial(x_1, x_2, \dots, x_n)} \\ = \qquad \qquad$					
(A)0	(B)2	(C)1	(D)3		
²⁸ If x = r cos θ and y = r sin θ then $\frac{\partial(x, y)}{\partial(r, \theta)} =$					
(A)0	(B)1	(C)r	(D) θ		
29 If $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ are functions of n variables $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is denoted by					
	(B)J $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$		(D)Non of these		
30 If $y_1 = 1 - x_1$, $y_2 = x_1(1 - x_2)$, $y_3 = x_1 x_2(1 - x_3)$. Then Jacobian of y_1 , y_2 , $y_3 = $					
(A) $-x_1^2 x_2$	(B) $x_1^2 x_2$	(C) $-x_2^2 x_1$	(D) $x_2^2 x_1$		