Examination October 2020

B.Sc. T.Y (Sem-V)

2166 Mathematics MAT - 502 Abstract Algebra - I

Max. Marks: 25

Time: One Hour

Instructions :

Solve any 25 questions from Q 1 to Q 30

1 If G={2,4,6,8} is a group under the	operation multiplication modulo 10, the	n the identity element in G is		
(A)4	(B)6	(C)5	(D)9	
2 If G={2,4,6,8} is a group under the	operation multiplication modulo 10, the	n the inverse of 6 in G is		
(A)4	(B)6	(C)2	(D)9	
3 Read the following two statements	and give the correct answer:			
P: Every subgroup of a group is alv	ways a normal subgroup.			
Q: Every subgroup of an abelian g	roup is always a normal subgroup.			
(A)Only P is correct	(B)Only Q is correct	(C)Both P and Q are correct	(D)Both P and Q are not correct.	
4 If G={-3n\n is any integer }is a grou	ip under addition then order of G is			
(A)1	(B)2	(C)countable infinite	(D)zero	
	-3n\n is any integer } would be an abeli	• •		
(A)Addition	(B)Subtraction	(C)Multiplication	(D)Division	
6 If are elements of a group G then the	he law $(ab)^{-1} = b^{-1}a^{-1}$ called as			
(A)Inverse law	(B)Identity law	(C)Inverse reverse law	(D)Closure property	
7 If G is the collection of all 2 ×2 real matrices then which of the following is correct				
(A)G is a group with respect to matrix addition.	(B)G is a group with respect to matrix multiplication.	(C)G is an abelian group with respect to matrix multiplication.	(D)G is not a group.	
8 If G is the collection of all 2 ×2 real	singular matrices then which of the foll	owing is not correct		
(A)G is a group with respect to matrix addition.	(B)G is a group with respect to matrix multiplication.	(C)G is an abelian group with respect to matrix addition.	(D)Inverse of each element in G does not exist in G.	
9 If H is a subgroup of a finite group	G, where order of G is 9 then which of	the following is correct		
(A)Order of H is 4. 10 10) If N is a normal subgroup of a g	(B)Order of H is 5. group G then for any $g \in G$, which	(C)Order of H is 6. of the following is not correct	(D)Order of H is 3.	
(A) gNg^{-1} is also a normal subgroup of G.	(B) $g^{-1}Ng$ is also a normal subgroup of G.	(C) Ng is also a normal subgroup of G.	(D) $Ng = gN$	
11 If N is a normal subgroup of G and H is a subgroup of G then				
(A) $N \cap H$ is a normal subgroup of G.	(D)Both (a) and (b) are not correct.			
12 If N is a normal subgroup of G ther	1			
 (A)(a) Every left coset of N in G is equal to right coset of N in G. (2) If O is a prove the result of the res	(B)Product of two right cosets of N in G is again a right coset of N in G.	(C)Both (a) and (b) are correct.	(D)(d) Both (a) and (b) are not correct.	
13 If G is a group then		(C) Path (a) and (b) are correct	(D)Deth (c) and (b) are not correct	
is always a homomorphism of G.	G (B)Every homomorphism ϕ on G is always a mapping from G into G <i>F into</i> \overline{G} with kernel K then		(D)Both (a) and (b) are not correct.	
(A)K is a normal subgroup of G.	(B)G/K is a quotient group.	(C)Both (a) and (b) are correct.	(D)Both (a) and (b) are not correct.	
()	$Ginto\bar{G}$ which is one-one and onto the state of G			
			(D)Deth (a) and (b) are not correct	
 (A) ♥ is an isomorphism. 10 If two provides the analysis of the second se	(B) ♥ is an automorphism	(C)Both (a) and (b) are correct.	(D)Both (a) and (b) are not correct.	
16 If two groups H and K are isomorpl (A)H=K	(B)Order of H = order of K.	(C)H and K both are abelian groups.	(D)If H is an abelian then K may not be an abelian.	
17 Isomorphism of two groups is relation.				
(A)Reflexive	(B)Symmetric	(C)Transitive.	(D)an equivalence.	
18 Which of the following is a correct s	statement?			
(A)If H is a subgroup of a group G the both H and G are having same binary operation.	f(D)Every automorphism of G is not a homomorphism of G.			
19 Which of the following is correct?				
 (A)A commutative ring which has no zero divisors is called integral domain. 	(B)If (R, +, *) is a ring then R is an abelian group under +.	(C)Both (a) and (b) are correct.	(D)Both (a) and (b) are not correct.	

Examination October 2020

20 If $(R, +, X)$ is a ring, then for all $x, y \in R$, which of the following is correct?					
(A)X ×(additive inverse of y)=x×y	(B)X ×(additive inverse of y) = additive (C)X×(additive identity) = x inverse of (x×y)		(D)X+(additive identity) = additive identity		
21 Which of the following is correct?					
(A)An integral domain with 100 elements is a field.	(B)Every ring is finite.	(C)Both (a) and (b) are correct.	(D)Both (a) and (b) are not correct.		
22 Which of the following is correct?					
(A)If D is an integral domain such that x + x + x=0 for every x in D then characteristic of D is 3.	at (B)If D is an integral domain such that x + x= 0 for every x in D then characteristic of D is zero.	t (C)Both (a) and (b) are correct.	(D)Both (a) and (b) are not correct.		
23 If (R,+,X) is a ring such that x×x=x for every $x \in R$ x then R is a					
(A)field	(B)Finite field	(C)Commutative ring	(D)non commutative ring.		
24 If Φ is a homomorphism of a ring R into $ar{R}$ defined by $\Phi(a)\!=\!0$ then					
(A) Φ is a homomorphism.	(B)l(Ф)=R	(C) Φ is a zero homomorphism.	(D)all of the above.		
25 A non-empty subset U of R is an ideal of R, it means that U is					
(A)Only left ideal of R.	(B)Only right ideal of R	(C)both left and right ideal of R.	(D)maximal ideal of R.		
26 If U is an ideal of ring R with unit element then					
(A)U is proper ideal of R.	(B)U is improper ideal of R.	(C)U={0}	(D)R=U		
27 If U is subgroup of R under addition satisfying $ur \in U$ for all $r \in R$ then U is called as					
(A)an ideal of R.	(B)left ideal of R.	(C)Right ideal of R	(D)abelian subgroup under multiplication.		
28 A ring R whose only ideals are {0} and R itself then R is a field if R is/are					
(A)commutative	(B)with unit element.	(C)commutative with unit element.	(D)neither commutative nor with unit element.		
29 If M is a maximal ideal of R which is commutative ring with unit element then					
(A)R is a field.	(B)R=M.	(C)R/M is not a field.	(D)R/M is a field.		
30 If f(x) and g(x) are two nonzero elements of F[x] then which of the following is true?					
(A)deg[f(x).g(x)]=deg[f(x)].deg[g(x)].	(B)deg[f(x).g(x)] = deg[f(x)] + deg[g(x)].	(C)deg[f(x)+g(x)]=deg[f(x)].deg[g(x)].	(D)deg[f(x)+g(x)]=deg[f(x)]+ deg[g(x)]		