Examination October 2020

B.Sc. T.Y (Sem-VI)

Max. Marks: 25

2047B 2)Ordinary Differtial Equation II -604

Time: One Hour

instruction

(A)-x

solve any 25 questions from Q.1 to Q.30

1 A differential equation is considered to be ordinary if it has... (A) One dependent varaible (B) More than one dependent (C)One independent varaible (D)More than one independent varaible varaible 2 Let $L(y) = a_0 y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_n(x) y = b(x)$. Points where $a_0(x) = 0$ is called (B)Regular and singular point (C)Singular point (A)Regular point (D)Niether singular nor regular point 3 An initial value problem $xy^{1}+y=0, y(0)=1$ has a solution. (B) e^x (A) x (C)Log x (D) <u>1</u> 4 There exists linearly independent solutions of $y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ (D)(n - 1) (A)One (B)Three (C)n The equation $y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$ has a solution of the form (D) $\frac{1}{x^r}$, r is constant (C) rx, r is constant (A) x^{r} , r is constant (B) x^{-r} , r is constant 6 If Q_1, Q_2, \dots, Q_n are definite an interval I is called linearly independent, if there exist a constant C_1, C_2, \dots, C_n such that C_1, C_2, \dots, C_n such that $C_1Q_1 + C_2Q_2 + \dots + C_nQ_n$ (B) $C_1 = C_2 = \dots = Cn = 0$ (A) $C_1 = C_2 = \dots = C_n = 1$ (C) $C_1 = C_2 = \dots = C_n \neq 0$ (D) $C_1=1, C_2=C_3=...=C_n=0$ 7 If a linear space of functions Q_1, Q_2, \dots, Q_n which are linearly independent and such that every function in the space can be represented as a linear combition of these, then $Q_1 Q_2 \dots Q_n$ is called (A) Dimension of linear space (B) Curl of linear space (C)Basis for the linear space (D)Gradient of a linear space 8 If Q 1, Q 2,, Q n are n solutions of $L(y) = y^{(n)} + a_1(x)y(n-1) + \dots + a_n(x)y = 0$ on an interval I, they are linearly independent if and only if (B) $W(Q_1 Q_2 \dots, Q_n) \neq 0$ (C) $W(Q_1 Q_2 \dots, Q_n) = 1$ (A) $W(Q_1, Q_2, \dots, Q_n) = 0$ (D)None of these 9 The dimension of a linear space does not depend on a choice of (A)Basis (B)Solution (C)Differential equation (D)None of these 10 The Wronskin of solutions $Q_1(x) = \cos x$ and $Q_2(x) = \sin x$ is (A)1 (B)2 (C)3 (D)4 11 If $(Q_1, Q_2, \dots, Q_n) = 0$ are n solutions of $L(y) = y(n) + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ on an interval I, and let as x 0 be any point in $W(Q_1, Q_2, \dots, Q_n)(x) = \dots$ (C) $\exp[-\int_{0}^{x} a_{1}(t)dt]W(Q_{1}Q_{2},\dots,Q_{n})(x_{0})$ $\exp\left[\int_{0}^{x} a_{1}(t)dt\right] W(\mathcal{Q}_{1},\mathcal{Q}_{2},\ldots,\mathcal{Q}_{n}) \exp\left[\int_{0}^{x} a_{1}(t)dt\right]$ 12 If Q_1, Q_2, \dots, Q_n are m solutions of nth order differential equation L(y) = 0 on I, then the function which is identically zero on l is known as (A) Regular solution (B) Singular solution (C)Non trival solution (D)Trival solution 13 The solution of IVP xy' + y = 0, y(1) = 1 exits only on (C) $-\infty < x < \infty$ (A) 0< *x*<∞ (B) $-\infty < x < 0$ (D)None of these 14 If Q_1, Q_2, \dots, Q_n are linearly independent solutions of $L(y) = y^{(n)} + an(x)y(n-1) + \dots + an(x)y = 0$ on an interval I. If Q is any solution of L(y) = 0 on I, then it can be represented in the form... (A) $Q = C_1 Q_1 + C_2 Q_2 + \dots + Cn Q_B$ $Q = C_1 Q_1 - C_2 Q_2 - \dots - Cn Q_C$ $Q = C_1 Q_1 - C_2 Q_2 + C_3 Q_3 + \dots$ (D) No de of these 15 The legendre polynomial of degree one is ... (D) x^{-2} (C) x^2

015E78B71B27EBED96F8632E246D77EB

(B)x

Examination October 2020			
16 The equation $(1-x^2)y''-xy'+x^2y=0$ is called			
(A)Legendre equation	(B)Hermite equation	(C)Chebyshev equation	(D)Bessel eqation
17 The equation $(1-x^2)y''-2xy'+x(x+1)y=0$ is known as			
(A)Hermite equation	(B)Bessel equation	(C)Chebyshev equation	(D)Legendre equation
18 Which of the following is n	 th legendre polynomial 		
(A) $Pn(x) = \frac{1}{2_n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$	(B) $Hn(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$	(C) $\int_{0}^{\infty} \int_{0}^{\infty} (x) = \frac{\sum_{m=0}^{\infty} (-1)^{m}}{(m!)^{2}} \left(\frac{x}{2}\right)^{2m}$	(D)None of these
19 The coefficient of x^n in Pn(x) is			
(A) (2n)!	(B) $\frac{(2n)!}{2^n (n!)^2}$	(C) $\frac{1}{2^n(n!)}$	(D)None of these
²⁰ The value of the integral	$\int_{-1}^{1} Pn^{2}(x) dx = \dots$		
(A)2	(B) $\frac{I}{2n+1}$	(C) $\frac{2}{2n+1}$	(D)1
²¹ The value of the integral $\int_{-1}^{1} P2(x)PI(x)dx$ is			
(A)1	(B)-1	(C)2	(D)None of these
22 The rgular singular point of the equation $(1-x^2)y''-2xy'+\alpha(\alpha+1)=are$			
(A)0	(B) ±1	(C) ±2	(D)None of these
23 If Ψ_p is a particular solution of $L(y)=y^{(n)}+a$, $(x)y^{(n-1)}+\dots+a_n(x)y=b(x)$ and $\phi_1,\phi_2,\dots,\phi_n$ are linearly independent solution of $L(y)=0$, then every solution Ψ of $L(y)=b(x)$ can be written as			
(A) $\psi = \psi_p + c_1 \phi_1 + c_2 \phi_1 \dots + c_n \phi_B$ $\psi = c_1 \phi_1 + c_2 \phi_1 \dots + c_n \phi_n$ (C) $\psi = \psi_p = c_1 \phi_1 + c_2 \phi_1 \dots + c_n \phi_D$)None of these			
24 The function $\phi_1(x) = x^{r^1}$ and $\phi_2(x) = x^{r^2}$ are the solution of			
(A)Euler equation	(B)Chebyshev equation	(C)Legendre equation	(D)Bessel equation
²⁵ The equation $x^2 y'' + \frac{3}{2} x y' + xy = 0$ has a regular singular point at			
(A) ±1	(B)0	(C) ±2	(D)None of these
26 The bessed functin of zero order of first kind is given by			
(A) $\sum_{m=0}^{2infinit} (-1)^m \left(\frac{x}{2}\right)^{2m}$	(B) $\sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} (\frac{x}{2})^m$	(C) $\sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} (\frac{x}{2})^{m+1}$	(D)None of these
27 The bessed function of zero order of the second kind is denoted by			
(A) $J_0(x)$	(B) $P_0(x)$	(C) $H_0(x)$	(D) $K_0(x)$
	he equation $x^2 y'' + xy' + y = 0$		
	(B) $\phi_1(x) = x ^{2i}, \phi_2(x) = x ^{-2i}$	1 1	(D)None of these
29 The genelar solution of $x^2 y'' + 2xy' - 6y = 0$ is given by (for x>0)			
() · · ·	(B) $C_1 X^{-3} + C_2 X^2$		(D)None of these
30 The initial value problem $y''' + x^2 y'' + 3xy' + 2xy = 0$ has at most solutions on I satisfying $\phi(x_0)=0, \phi'(x_0)=2, \phi''(x_0)=2$			
(A)One	(B)Two	(C)Three	(D)Four