Total No. of Printed Pages:# 2

Examination October 2020

B.Sc. T.Y (Sem-VI)

2026 Mathematics MAT - 602 Abstract Algebra - II

Time: One Hour		C C	Max. Marks: 25
Instructions			
Solve any 25 questions	from Q.1 to Q.30		
1 In a vector space V ov	er field F , if α ∈ f and X, Y	í e f	
then α (x + y) =			
(A) α x + y	(B)x + α γ	(C) α x + α y	(D)None of these
 Vector space is defined 		(O) a X : a y	
(A)Field	(B)Group	(C)Ring	(D)Monoids
		e vector space V/W is called	
A)Null space	(B)Quotient space	(C)Linear space	(D)None of these
		= 6 and then W = 2 , then dim $(V/$	
(A)12	(B)8	(C)5	(D)4
	pace cannot contain		(2):
(A)A positive vector	(B)A negative vector	(C)A zero vector	(D)Non of these
	nite dimensional vector space V		(_)
(A) Dim $W \ge Dim V$	(B)Dim $W \le Dim V$	(C)Dim W = Dim V	(D)None of these
	ver a field F, then the elements o		(_)
(A)Constants	(B)Scalars	(C)Vectors	(D)None of these
3 If T is a homomorphism	n of a vector space U onto vector	space V with kernel W , then V is	isomorphic to
A)U/W	(B)W/U	(C)W	(D)U
In an n-dimensional ver	ctor space, each set consisting o	f n + 1 or more elements is	
(A)Linearly independent	(B)A basis	(C)Linearly dependent	(D)None of these
10 If dim V = m , then the	number of vectors in a basis of V	' is	
(A)Less then n	(B)Equal to n	(C)Greater than N	(D)None of these
11 The number of elemen	ts in any basis of a finite- dimens	ional vector space V over F are 3,	then dim V =
(A)5	(B)4	(C)2	(D)3
12 The minimum number	of elements required to form a ve	ector space over any field is	
(A)2	(B)3	(C)1	(D)4
		√, then dim W + dim A(W) =	
(A)0	(B)Dim V	(C)Dim \hat{V}	(D)None of these
		al vector space V over F_1 then	
		(C)A(W_1) + A(W_2)	
		$(C)A(m_1) + A(m_2)$	
15 An orthogonal set of a		(C) in carly independent	(D)None of these
A)Linearly dependent	(B)A basis	(C)Linearly independent	(D)None of these
		dim V= 8 and dim W = 5, then din (0)	
A)3	(B)8	(C)13	(D)24
17 The norm of the vector	(2,2,-1) IS (B)5		
	(6)5	(C)4	(D)3
(A)9			
18 In an inner product spa	ace V, the inequality $ (u, v) <=$		
l8 In an inner product spa A)Bessel's inequality		(C)Triangle inequality	(D)None of these

Examination October 2020

(A)1	(B)0	(C)v	(D) v		
20 An R-mode M is called if its only submodules are (0) and M itself					
(A)Reducible	(B) Irreducible	(C)United	(D)Cyclic		
21 An R- model M is called R-module if 1 ∈ R and 1m=m for all m in M					
(A)Unital	(B)Cyclic	(C)Reducible	(D)Irreducible		
22 If V is finite- dimensional vector space and $\hat{\hat{ u}}$ is second dual space of V then					
(A) Dim V = dim \hat{V}	(B)Dim V > dim \hat{V}	(C)Dim \hat{V} < dim V	(D)None of these		
23 In an inner product space V , if u is orthogonal to v, then \ldots .					
(A)(u,v) = 1	(B)(u,v)=-1	(C)(u , v) = 0	(D)None of these		
24 The subset of S of a vector space V over F form basis if S is linearly independent and					
(A)L(S) = S	(B)L(S) = V	(C)L(F) = F	(D)None of these		
25 If \hat{V} is a dual space of vector space V over F , then					
(A) Dim V + dim $\hat{V} = 0$	(B)Dim V = dim \hat{V}	(C)Dim v – dim $\hat{V} = 1$	(D)None of these		
26 A vector space V with an inner product is called					
(A)Inner product space	(B)Dual space	(C)Hilbert space	(D)None of these		
27 Intersection of two subspace W_1 and W_2 of a vector space V over a field F is					
(A)Always dual space	(B)Always subspace	(C)Never a subspace	(D)None of these		
28 Union of two linearly dependent sets of vector is					
(A)Linearly dependent	(B)Linearly independent	(C)May or may not be linearly independent	(D)None of these		
29 The basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of the vector R^3 (R) is know as the					
(A)Hamel basis	(B)Standard basis	(C)Normal Basis	(D)Dual Basis		
30 If V is a finite dimensional vector space and \hat{v} is its dual space, x, y \in v, $x \neq y$, then there is an f $\in \hat{v}$ such that					
(A) $f(x)=f(y)$	(B) $f(x) \ge o$	(C) $f(x) \neq f(y)$	(D)None of these		