Examination October 2020

B.Sc. T.Y (Sem-VI)

2025 Mathematics MAT-601 Real Analysis-II

Time: One Hour Instructions Solve any 25 questions f			Max. Marks: 25
) for all $X, Y, Z \in M$, the triangle $p(x, y) \ge \rho(x, z) + \rho(z)$	iangle inequality is (c) $\rho(x, y) \leq \rho(x, z) - \rho(z, y)$	(D)None of these
2 The metric defined by and metric ρ is called	$1 \rho: R \times R \to (0,\infty) \text{defined b} \rho$	$p(x,x)=0, x \in M$ and $p(x,y)=1$	for $x, y \in R x \neq y$ then the
(A)Indiscrete metric	(B)Discrete metric	(C)Usual metric	(D)None of these
3 In a metric space M , ρ	, the condition $\rho(x, y) \ge 0$, for	$x, y \in M$ is called	
(A)Negativity	(B)Non-negativity	(C)Symmetry	(D)None of these
4 In the discrete metric spac	e (R, d) the open ball B[x;1]	=	
(A) {x}	(B)X	(C)	(D)R
	sets in the metric space (M, ρ)		
(A)Closed set	(B)M	(C)Open set	(D)¢
	, the subset E of M is closed if		
(A) $E \subset \overline{E}$	(B) $E \supset \overline{E}$	(C) $E = \phi$	(D) $E = \overline{E}$
	1], with the absolute value metric		
(A)(- ¹ / ₄ , ³ / ₄)	(B)[0, ³ / ₄]	(C)(0, ³ / ₄)	(D)(¹ / ₄ , ¹ / ₂)
	v intersection of closed sets is		
(A)Open set	(B)Closed set	(C)Empty set	(D)None of these
9 In a metric space (M, ρ)	, the set and the empty set ϕ bo		
(A)Open and Closed sets	(B)Closed sets	(C)Open set	(D)None of these
.,		nplement of G i.e. $G' = M - G$ is	
(A)Open set	(B)Closed set	(C)Open and Closed set	(D)None of these
11 If f and g are continuous f	unctions from a metric space M_1	into metric space M_2 , then the f	function f+g is
(A)Uniformly discontinuous	(B)Discontinuous	(C)Continuous	(D)None of these
12 The metric space R with u	sual metric is		
(A)Disconnected	(B)Compact	(C)Connected	(D)None of these
. ,	defined on a compact metric spa		
(A)Uniformly continuous	(B)Discontinuous	(C)Not uniformly continuous	(D)None of these
14 In R, a real valued continu	ous function on a closed bounded		
(A)Unbounded	(B)Bounded	(C)Continuous	(D)None of these
15 The subset A of metric spa	ace (M, ρ) is not bounded, the	en	
(A) Diam $A = -\infty$	(B) Diam $A = 0$	(C)Diam $A = 1$	(D)Diam $A = \infty$
16 Every finite subset of a me	etric space M is		
(A)Bounded above	(B)Totally bounded	(C)Not bounded	(D)None of these
		M converges to a points in M, then the	. ,
(A)Complete Metric Space	(B)Compact Metric Space	(C)Connected Metric Space	(D)None of these
	the compact metric space (M,p), t		
(A) Compact	(R) Comulata	(C)Connected	(D)None of these
(A)Compact	(B)Complete	(C)Connected	(D)None of these
19 A metric space M is Comp	pact, 11 It 18		

Examination October 2020

(A)Complete	(B)Compact	(C)Complete and totally bounded	l (D)Totally bounded		
20 The set of all irrational numbers is					
(A)Of measure zero	(B)Not of measure zero	(C)Finite set	(D)None of these		
21 For Riemann integrability, condition of continuity is					
(A) Necessary	(B)Sufficient	(C)Necessary and sufficient	(D)None of these		
22 If the functions f and g are integrable on [a, b] and $f(x) \le g(x)$ for $x \in [a, b]$, then					
(A) $\int_{a}^{b} f(x) \leq \int_{a}^{b} g(x)$	(B) $\int_{a}^{b} f(x) \ge \int_{a}^{b} g(x)$	(C) $\int_{a}^{b} f(x) = \int_{a}^{b} g(x)$	(D)None of these		
23 If $f(x) = x(0 \le x \le 1)$ let $\sigma = \{0, 1/3, 2/3, 1\}$ be the subdivision of $[0, 1]$, then $U[f; \sigma] = 0$					
(A)0	(B) 1/3	(C)2/3	(D)1		
24 Any constant function on a closed bounded interval [a, b] is					
(A)Riemann integrable	(B)Not Riemann integrable	(C)Not integrable	(D)None of these		
²⁵ If f is a bounded function on the closed bounded interval [a, b], if σ is any subdivision of [a, b], then $\int_{a}^{b} f(x) dx =$					
(A) $g.l.b.U[f;\sigma]$	(B) $g.l.b.L[f;\sigma]$	(C) <i>l.l.b.U</i> [<i>f</i> ;σ]	(D) <i>l.l.b.L</i> [<i>f</i> ;σ]		
26 If the function f is Riemann integrable function over the [a, b], then					
(A) $\left \int_{a}^{b} f\right \leq \int_{b}^{a} f $	(B) $\left \int_{a}^{b} f\right \ge \int_{a}^{b} f $	(C) $\left \int_{a}^{b} f\right \leq \int_{a}^{b} f $	(D)None of these		
27 If $f \in R[a, b]$ and λ is any real number, then the function λf is					
(A)Not integrable	(B)Riemann integrable	(C)Not Riemann integrable	(D)None of these		
28 If f(x) is Riemann integrable in every interval and is periodic with period 2π , then $\int_{-\pi}^{\pi} f(x) dx = \dots$					
	(B) $\int_{-\pi}^{\pi} f(a+x)dx$	(C) $\int_{-\pi}^{\pi} f(a-x) dx$	(D)None of these		
29 A function f is said to be odd function if					
(A) f(-x) = f(x)	(B) f(x) = -f(-x)	(C)f(-x)=-f(x)	(D)None of these		
30 $\int_{-\pi}^{\pi} \sin mx \cdot \cos nx dx = \dots$ for m,n = 0,1,2,3					
-π					
(A)1	(B)π	(C)-π	(D)0		