Total No. of Printed Pages:03

SUBJECT CODE NO:- B-2022 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y. (Sem-I) Examination Oct/Nov 2019 Mathematics MAT - 102 Differential Equations

[Time: 01:30 Hours]

[Max. Marks:50]

Please check whether you have got the right question paper.

N.B

- 1) Attempt all questions.
- 2) Figures to the right indicates full marks.

- Q.1
- A) Attempt any one:-

08

- a) Prove that the necessary and sufficient condition of the differential equation $\frac{\partial M}{\partial N} = \frac{\partial M}{\partial N} = \frac{\partial N}{\partial N}$
- Mdx + Ndy = 0, being exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
- b) Explain the method of solving the differential equation $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x or constants.
- B) Attempt any one:-

07

c) Solve the simultaneous equations:

$$\frac{dx}{dt} - 7x + y = 0$$

$$\frac{dy}{dt} - 2x - 5y = 0$$

- d) Solve $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \frac{dy}{dx} y = \cos 2x$
- Q.2
- A) Attempt Any One:-

08

a) Explain the method of solving the differential equation

$$\frac{d^{n}y}{dx^{n}} + P_{1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + P_{n} \cdot y = X,$$

Where P_1 , P_2 , ----- P_n are constants and X is a function of x.

b) Explain the method of solving the differential equation.

$$(a+bx)^n \frac{d^n y}{dx^n} + P_1(a+bx)^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + ---- + P_{n-1}(a+bx) \frac{dy}{dx} + P_n y = f(x)$$
where $P_1, P_2, ----- P_n$ are constants.

1

Examination Oct/Nov 2019

B-2022 07

- B) Attempt any one:
 - c) Solve $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{4x}$
 - d) Solve $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} 4y = x^4$
- A) Attempt any one:-Q.3

a) With usual notation, prove that

$$\frac{1}{f(D)}e^{ax}.V = e^{ax}.\frac{1}{f(D+a)}.V$$
where V be any function of x.

b) Explain the method of solving the equation of the form

$$\frac{d^n y}{dx^n} = f(x)$$

B) Attempt any one:-

05

- c) Solve $(a^2 2xy y^2)dx (x + y)^2 dy = 0$
- d) Form the partial differential equation by eliminating arbitrary constants a and b from the equation.

$$z = ax + by + ab$$

Choose the correct alternative: Q.4

10

- The integrating factor of the differential equation $x \frac{dy}{dx} ay = x + 1$ is ----
 - a) $\frac{1}{x^a}$ b) x^a c) $\frac{1}{x}$ d) $\frac{1}{a}$

- The general solution of the equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} 54y = 0$ is ----ii)

 - a) $y = C_1 e^{6x} + C_2 e^{-9x}$ b) $y = C_1 e^{-6x} + C_2 e^{3x}$
 - c) $y = C_1 e^{6x} + C_2 e^{4x}$
 - d) None of the above
- The particular integral of the equation $x^2 \frac{d^2y}{dx^2} + 7x \frac{dy}{dx} + 5y = x^5$ is ----iii)
 - a) $\frac{x^5}{60}$ b) x^5 c) $\frac{x^5}{30}$ d) $\frac{x^5}{6}$

Examination Oct/Nov 2019

B-2022

- iv) The partial differential equation corresponding to z = ax + by + ab is ----
 - a) z=px+qy

b) z=pq

c) z=px+qy+pq

- d) None of the above
- v) The ordinary differential equation and partial differential equation are differ by
 - a) Their number of independent variable
 - b) Their number of dependent variable
 - c) Their total derivative
 - d) None of the above