Total No. of Printed Pages:2

SUBJECT CODE NO:- B-2008 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y. (Sem-I) Examination Oct/Nov 2019 Physics Paper-II Heat and Thermodynamics

[Time: 1:30 Hours] [Max.Marks:50]

Please check whether you have got the right question paper.

- i) Attempt all questions.
- ii) Illustrate your answer with suitable labelled diagram.
- Q.1 (a) Define coefficient of thermal conductivity deduce expression for radial flow of heat 10 along the wall of cylindrical tube.
 - (b) What is critical constant. Derive an expression for constant of vanderwall's equation. 10

OR

- (c) What is adiabatic process. Derive an expression for work done in adiabatic process.
- (d) Discuss change of entropy in an irreversible process and show that $\frac{Q_2}{T_2} \frac{Q_1}{T_1} > 0$
- Q.2 (a) Write a note on comparison of conductivities of different metals. 05
 - (b) The opposite faces of a metal plate of 0.2 cm thickness are at a difference of temperature of 100° C and the area of the plate is 200 sq. cm. Find the quantity of heat that will flow through the plate in one minute if K=0.2 CGS unit.
 - (c) Write a note on Carnot's ideal heat engine.
 - (d) Find the efficiency of a Carnot's engine working between 127 °C and 27 °C.

OR

- (a) Explain correction for volume in vanderwall's gas equation.
- (b) The Vanderwall's constant a and b for 1 gram molecule of hydrogen are a=0.245atms-liter²-mole² and b= 2.67×10^{-2} liter-mole⁻¹. Calculate the critical temperature.
- (c) Using maxwell's thermodynamical relation prove that $\frac{dP}{dT} = \frac{L}{T(V_2 V_1)}$
- (d) Calculate the change in entropy when 100gm of Ice at 0°C is converted into water at the same temperature.

 (Given Latent heat of Ice = 80 Cal/gm)

Q.3 Multiple choice questions.

10

- 1) The rate of change of temperature with respect to distance is -----
 - (a) Velocity of gradient
 - (b) Mass concentration gradient
 - (c) Temperature gradient
 - (d) None of these
- 2) Heat transmitted through a substance with actual migration of particles.
 - (a) Convection

(b) Conduction

(c) Radiation

- (d) All of these
- 3) A Carnot's engine is operating between 100°C and 50°C. Its efficiency will be -----
 - (a|) 13.4%
- (b) 15.2%
- (c) 50%
- (d) 100%
- 4) An isothermal process is related to -----
 - (a) Constant pressure
 - (b) Constant volume
 - (c) Constant temperature
 - (d) Constant heat
- 5) Volume of sphere of influence of the molecule is----- time of the volume of molecule.
 - (a) 8
- (b) 6
- (c) 4
- (d) 10
- 6) The critical constant of temperature (Tc) is ------
- (b) $\frac{8ab}{27R}$
- (c) $\frac{27Rb}{8a}$ (d) $\frac{8a}{27Rh}$
- 7) maxwell's thermodynamical relation does not depend on
 - (a) Temperature

(b) Pressure

(c) Volume

- (d) Density
- 8) The clausius clapeyron equation is -----

(a)
$$\frac{dP}{dt} = \frac{L}{T(V_2 - V_1)}$$

(b)
$$\frac{dP}{dt} = \frac{P}{T(V_2 - V_1)}$$

(c)
$$\frac{dP}{dt} = T_L(V_2 - V_1)$$

- (d) None of these
- 9) Maxwell's thermodynamic relation is

(a)
$$\left(\frac{ds}{dT}\right)_T = \left(\frac{\partial P}{\partial V}\right)_T$$

(b)
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{dP}{\partial s}\right)_V$$

(c)
$$\left(\frac{\partial T}{\partial P}\right)_{P}^{T} = \left(\frac{\partial V}{\partial P}\right)_{P}^{T}$$

- (d) None of these
- 10) Entropy is measured in -----
 - (a) Joules / Kelvin
- (b) Cal / Kelvin
- (c) Both (a) and (b)
- (d) None of the above