Total No. of Printed Pages:3

SUBJECT CODE NO:- B-2162 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y (Sem.-II) Examination OCT/NOV 2019 **Mathematics MAT - 202** (Geometry)

[Time: 1:30 Minutes] [Max.Marks:50]

Please check whether you have got the right question paper.

N.B

- i) Attempt all questions
- ii) Figures to the right indicate full marks
- Q.1
- A) Attempt any one

08

- a) Prove that every equation of the first degree in x,y,z represents a plane.
- b) Find the equations of the line passing through a given point A(x,y,z) and having direction cosines l.m.n.
- B) Attempt any one

07

- c) Obtain the equation of the plane through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin
- d) Prove that the lines

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8};$$

$$\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$$

Intersect find also their point of intersection and the plane through them.

Q.2

A) Attempt any one

08

a) Find the length of the perpendicular from a given point P (x, y, z) to given line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{Z-\gamma}{n}$

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{Z-\gamma}{n}$$

- b) Prove that the plane section of a sphere is a circle
- B) Attempt any one

07

c) Find the magnitude and the equations of the line of shortest distance between the lines

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$$

$$\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$$

2019

d) Find the equation of the sphere through the circle

$$x^{2} + y^{2} + z^{2} + 2x + 3y + 6 = 0$$
$$x - 2y + 4z - q = 0$$

And the centre of the sphere

$$x^2 + y^2 + z^2 - 2x + 4y - 6z + 5 = 0$$

Q.3 A) Attempt any one 05

- a) Show that every section of a right circular cone by a plane perpendicular to its axis is a circle.
- b) Find the points of intersection of the line

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{Z-\gamma}{n}$$

With the central conicoid

$$ax^2 + by^2 + cz^2 = 1$$

B) Attempt any one

05

c) Find the equation of the right circular cylinder of radius 2 whose axis is the line

$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$$

d) Find the equations to the tangent planes to

$$7x^2 - 3y^2 - z^2 + 21 = 0$$

Which pass through the line

$$7x - 6y + 9 = 0$$
, $z = 3$

Q.4 Choose the correct alternatives and fill the blanks 10

1) The equation to a plane in normal form is -----

a)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

b)
$$\frac{x}{l} + \frac{y}{m} + \frac{z}{n} = 1$$

c)
$$ax + by + cz = p$$

d)
$$lx + my + nz = p$$

- 2) Two lines which do not lie in the same plane are called ----
 - a) Parallel
- b) intersecting
- c) coincident d) skew
- 3) The shortest distance between the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{4}$ is -----

- a) 1/6 b) $(\sqrt[1]{6})$ c) $(\sqrt[1]{3})$
- d) 1/3

2019

4) The radius of the sphere
$$x^2 + y^2 + z^2 - 2x + 4y - 6z + 7 = 0$$
 is ------

- b) 5
- c) -7
- d) $\sqrt{7}$
- 5) If a right circular cone has mutually perpendicular generators then semi vertical angle
 - a) $tan^{-1}\sqrt{2}$
- b) $tan^{-1} 2$
- $c)\pi/4$
- d) $\pi/2$

3 2019