Total No. of Printed Pages:02

SUBJECT CODE NO:- B-2161 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y (Sem.-II) Examination OCT/NOV 2019 Mathematics MAT - 201 (Integral Calculas)

[Time: 1:30 Hours] [Max.Marks:50] Please check whether you have got the right question paper. N.B 1) Attempt all questions. 2) Figures to the right indicate full marks. **Q.1 A**) Attempt any one: 08 Obtain a reduction formula for $\int x^n e^{ax} dx$ and apply it to evaluate $\int x^3 e^{ax} dx$. b) Obtain a reduction formula for $\int \cos^n x \, dx$, where n is positive integer. Hence evaluate $\int \cos^4 x \, dx$. **B**) Attempt any one: **07** c) Evaluate $\int \frac{2x-3}{(x^2-1)(2x+3)} dx$ d) Evaluate $\int \frac{(x^2+x+1)}{(x+1)^2(x+2)} dx$ **Q.2** A) Attempt any one **08** a) Evaluate $\int_a^b \sin x \, dx$ as the limit of a sum. b) Find the area enclosed between one arch of the cycloid $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$ and its base. **07** B) Attempt any one c) Find the length of the arc of the curve $y = \log \sec x$ from x=0 to x= $\pi/3$.

Q.3 A) Attempt any one

about the initial line.

05

a) Show that the volume obtained by revolving about X-axis, the arc of the curve y = f(x), intercepted between the points whose abscissae are a,b is $\int_a^b \pi y^2 dx$, it being assumed that the arc does not cut X-axis.

d) Find the volume of the solid obtained by revolving the cardioide $r = a(1 + cos\theta)$

1

10

- b) Prove that the necessary and sufficient condition for a continuous vector point function to be irrotational in a simply connected region R is that it is the gradient of a scalar point function.
- 05 B) Attempt any one:
- c) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ when

$$\vec{F} = xy\vec{\imath} + yz\vec{\jmath} + zx\vec{k}$$

Where C is the curve

 $r = \vec{i}t + \vec{j}t^2 + \vec{k}t^3$; t varying from -1 to +1.

- d) If $\overrightarrow{OA} = a\vec{i}$, $\overrightarrow{OB} = a\vec{j}$, $\overrightarrow{OC} = a\vec{k}$ form three coterminous edges of a cube and S denotes the surface of the cube, Evaluate $\int_{S} \{(x^3 - yz)\vec{i} - 2x^2y\vec{j} + 2\vec{k}\}$. nds
- Choose the correct alternative and fill in the blanks. **Q.4**

1)
$$\int \frac{dx}{(3-2x)^4} = ----$$

 $a) -\frac{1}{6} \cdot \frac{1}{(3-2x)^3}$ b) $\frac{1}{6} \cdot \frac{1}{(3-2x)^3}$ c) $\frac{1}{(3-2x)^3}$ d) $\frac{1}{6(3-2x)^5}$

2)
$$\int \cos^3 x \, dx = -----$$

a) $-\sin x + \frac{\sin^3 x}{3}$

b)
$$-\sin x - \frac{\sin^3 x}{3}$$

d)
$$\sin x + \frac{\sin^3 x}{3}$$

c)
$$\sin x - \frac{\sin^3 x}{3}$$

d)
$$\sin x + \frac{\sin^3 x}{3}$$

- 3) A curve $\vec{r} = \vec{f}(t)$, is called smooth if $\vec{f}(t)$, is ----
 - a) Differentiable
 - b) Continuously differentiable
 - c) Discontinuous
 - d) None of these
- 4) The process of determining the area of a plane region is known as ------.
 - a) Quadrature
- b) Rectification
- c) Volume
- d) none of these
- 5) $\int_{S} \vec{r} \cdot d\vec{a} = ---$ where V is the volume enclosed by the surface S.
- a) V b) 3V c) $\frac{1}{3}$ V d) 2V