Total No. of Printed Pages:2

SUBJECT CODE NO:- B-2006 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. S.Y. (Sem-III) Examination Oct/Nov 2019 Chemistry Paper-VIII Physical Chemistry

[Time: 1:30 Hours]		Hours]	lax.Marks:50
		Please check whether you have got the right question paper. i) Attempt all questions. ii) Illustrate your answer with suitable diagram.	
Q.1	a)	State and explain Hess's law of constant heat summation.	10
		Calculate the maximum work done when one mole of an ideal gas expands isotherand reversibly from 0.12 m ³ to 0.24 m ³ at 300 K.(R=8.314 JK ⁻¹ mol ⁻¹)	rmally
	b)	What is Helmholtz work function? Give its variation with pressure and volume.	10
	c)	Define the term isothermal, adiabatic, reversible and irreversible process with suit examples.	table 10
	d)	State and explain Carnot theorem. Calculate efficiency and work done of an engin operating between 325 K and 425 K which absorbs 700 J of heat.	ne 10
Q.2	a)		10
	b)	Explain the concept of entropy. Give its physical significance. OR	10
	Write short notes on any four of the following.		20
		Homogeneous and heterogeneous system.	
		Molar heat capacity at constant pressure and constant volume.	
Á		Statements of second law of thermodynamics.	
, cot	A/Y />~ / (O)	Gibbs free energy. Reaction isotherm.	
300		Le Chatelier's principle.	
Q.3	Multiple choice questions.		10
45000 40000		The enthalpy of a system is given by	
	5000	(a) $H=E+PV$ (b) $H=E-PV$	
		(c) E=H+PV (d) None of these	
2000	2) The heat of neutralization of strong acid and strong base is always—		
3,000	3333	(a) zero (b) constant	
10000	22000	(c) positive (d) changing	

- 3) Example of intensive property is
 - (a) surface tension
- (b) density

(c) viscosity

- (d) all
- 4) A part of universe which is under thermodynamic study is called as
 - (a) system

(b) surrounding

(c) process

- (d) thermochemistry
- 5) Entropy is a measure of--
 - (a) concentration
- (b) velocity

(c) zig - zag

- (d) randomness
- 6) Which of the following is true for a cyclic process?
 - (a) $\Delta E = 0$

(b) $\Delta E = q - w$

(c) q=w

- (d) all of these
- 7) Efficiency of heat engine operating between 400 K and 200 K is—
 - (a) 0.25

(b) 0.50

(c) 0.75

- (d) 1
- 8) A spontaneous reaction proceeds with a decrease in--
 - (a) entropy

(b) enthalpy

(c) free energy

- (d) internal energy
- 9) The equation $\frac{dp}{dt} = \frac{\Delta H}{T(V_2 V_1)}$ is called—
 - (a) Gibbs Helmholtz's equation
- (b) Kirchoff's equation
- (c) Clapeyron equation
- (d) Clausius Clapeyron equation
- 10) Equilibrium reactions are characterized by
 - a) Going to completion
 - b) of being nonspontaneous
 - c) the presence of both reactants and products in a definite proportion
 - d) both a & b