Total No. of Printed Pages:02 ## SUBJECT CODE NO:- B-2026 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. T.Y. (Sem-V) Examination Oct/Nov 2019 Mathematics MAT - 502 Abstract Algebra - I | [Time: 1:30 Hours] | | | [Max. Marks:50] | | |--------------------|-------------------------|--|-----------------|--| | N.B | | Please check whether you have got the right question paper. 1) All questions are compulsory. 2) Figures to the right indicate full marks. | | | | Q.1 | a) 1
6
b) 1 | If H and K are subgroups of G, then prove that HK is a subgroup of group G if and only if HK=KH. If \emptyset is a homomorphism of G onto \overline{G} with kernel K, then prove that K is normal subgroup of G. | 08 | | | | B) Atte
c) I
d) S | If G is the group of all complex numbers $a+ib$, a , b are real, not both zero, under multiplication, and if $H = \{a + ib a^2 + b^2 = 1\}$, then show that H is a subgroup of G . Show that the intersection of two normal subgroups of G is also normal subgroup of G . | | | | Q.2 | a) I
b) 1 | Impt any one:
Prove that the homomorphism \emptyset of a ring R into a ring R' is an isomorphism if and only if $I(\emptyset) = (0)$, where $I(\emptyset)$ denotes the kernel of \emptyset
If $f(x), g(x)$ are two non-zero elements of the polynomial ring $F[x]$, then prove that $\deg f(x) \cdot g(x) = \deg f(x) + \deg g(x)$ | 08 | | | | B) Atte c) 1 t d) 1 | If R is a ring with unit element 1 and \emptyset is homomorphism of R onto R' , then prove that $\emptyset(1)$ is unit element of R' . If R is the ring of all real valued continuous functions on interval $[0,1]$ and if $M = \{f(x) \in R f(\gamma) = 0 \text{ where } 0 \le \gamma \le 1\}$, then prove that M is maximal ideal of R . | 07 | | | Q.3 | a) 1 | impt any one:- If G is a group then prove that the identity element of G is unique. If p is prime number then prove that J_p , the ring of integers mod p is a field. | 05 | | | | B) Atte | impt any one:- If G is the group of integers under addition, H the subset consisting of all multiples of G , then show that H is subgroup of G . | 05 | | B-2026 d) If R and R' are any two arbitrary rings, where R = R' and define $\emptyset: R \to R'$ by $\emptyset(a) = a$ for all $a \in R$ then show that \emptyset is homomorphism. Also find the kernel of \emptyset . Q.4 Choose the correct alternative and rewrite the sentence: 10 - 1) If every element of the group G is its own inverse then the group G is ---- - a) Quotient group - b) Normal subgroup - c) Abelian group - d) Non-abelian group - 2) If $G = \{\pm 1, \pm i, \pm j, \pm k\}$ is a group of quaternions then o(G) = --- - a) 0 - b) 2 - c) 4 - d) 8 - 3) If *H* is a subgroup of a group G, and if a, b \in G, then ---- - a) $aH \neq bH$ and $aH \cap bH = \emptyset$ - b) aH = bH or $aH \cap bH \neq \emptyset$ - c) aH = bH or $aH \cap bH = \emptyset$ - d) $aH \neq bH$ and $aH \cap bH \neq \emptyset$ - 4) If $(R, +, \cdot)$ is a ring, then (R, +) is ---- - a) group - b) Abelian group - c) Commutator group - d) finite group - 5) Zero element of the quotient ring R/U is ---- - a) *R* - b) R + U - c) U + 1 - d) *U*