Total No. of Printed Pages:02

SUBJECT CODE NO:- B-2026 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. T.Y. (Sem-V) Examination Oct/Nov 2019 Mathematics MAT - 502 Abstract Algebra - I

[Time: 1:30 Hours]			[Max. Marks:50]	
N.B		Please check whether you have got the right question paper. 1) All questions are compulsory. 2) Figures to the right indicate full marks.		
Q.1	a) 1 6 b) 1	If H and K are subgroups of G, then prove that HK is a subgroup of group G if and only if HK=KH. If \emptyset is a homomorphism of G onto \overline{G} with kernel K, then prove that K is normal subgroup of G.	08	
	B) Atte c) I d) S	If G is the group of all complex numbers $a+ib$, a , b are real, not both zero, under multiplication, and if $H = \{a + ib a^2 + b^2 = 1\}$, then show that H is a subgroup of G . Show that the intersection of two normal subgroups of G is also normal subgroup of G .		
Q.2	a) I b) 1	Impt any one: Prove that the homomorphism \emptyset of a ring R into a ring R' is an isomorphism if and only if $I(\emptyset) = (0)$, where $I(\emptyset)$ denotes the kernel of \emptyset If $f(x), g(x)$ are two non-zero elements of the polynomial ring $F[x]$, then prove that $\deg f(x) \cdot g(x) = \deg f(x) + \deg g(x)$	08	
	B) Atte c) 1 t d) 1	If R is a ring with unit element 1 and \emptyset is homomorphism of R onto R' , then prove that $\emptyset(1)$ is unit element of R' . If R is the ring of all real valued continuous functions on interval $[0,1]$ and if $M = \{f(x) \in R f(\gamma) = 0 \text{ where } 0 \le \gamma \le 1\}$, then prove that M is maximal ideal of R .	07	
Q.3	a) 1	impt any one:- If G is a group then prove that the identity element of G is unique. If p is prime number then prove that J_p , the ring of integers mod p is a field.	05	
	B) Atte	impt any one:- If G is the group of integers under addition, H the subset consisting of all multiples of G , then show that H is subgroup of G .	05	

B-2026

d) If R and R' are any two arbitrary rings, where R = R' and define $\emptyset: R \to R'$ by $\emptyset(a) = a$ for all $a \in R$ then show that \emptyset is homomorphism. Also find the kernel of \emptyset .

Q.4 Choose the correct alternative and rewrite the sentence:

10

- 1) If every element of the group G is its own inverse then the group G is ----
 - a) Quotient group
 - b) Normal subgroup
 - c) Abelian group
 - d) Non-abelian group
- 2) If $G = \{\pm 1, \pm i, \pm j, \pm k\}$ is a group of quaternions then o(G) = ---
 - a) 0
 - b) 2
 - c) 4
 - d) 8
- 3) If *H* is a subgroup of a group G, and if a, b \in G, then ----
 - a) $aH \neq bH$ and $aH \cap bH = \emptyset$
 - b) aH = bH or $aH \cap bH \neq \emptyset$
 - c) aH = bH or $aH \cap bH = \emptyset$
 - d) $aH \neq bH$ and $aH \cap bH \neq \emptyset$
- 4) If $(R, +, \cdot)$ is a ring, then (R, +) is ----
 - a) group
 - b) Abelian group
 - c) Commutator group
 - d) finite group
- 5) Zero element of the quotient ring R/U is ----
 - a) *R*
 - b) R + U
 - c) U + 1
 - d) *U*