Total No. of Printed Pages:2

SUBJECT CODE NO:- B-2166 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. T.Y (Sem.-VI) Examination OCT/NOV 2019 Mathematics MAT - 602 Abstract Algebra – II

[Time: 1:30 Minutes] [Max. Marks:50]

Please check whether you have got the right question paper.

N.B

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- Q.1 (A) Attempt any one:

08

- (a) Prove that the kernel of a homomorphism T is a subspace of a vector space V, also that a homomorphism T is an isomorphism if and only if its kernel is (0).
- (b) If $v_1, v_2, ..., v_n$ are in a vector space V, then prove that either they are linearly independent or some v_k is linear combination of the preceding one $v_1, v_2, ..., v_{k-1}$.
- (B) Attempt any one:

07

- (c) If V is finite-dimensional vector space and W is a subspace of V, then prove that there is a subspace W_1 of V such that $V = W \oplus W_1$.
- (d) If U is a vector space and W a subspace of U, then prove that there is a homo morphism of U onto U/W.
- Q.2 (A) Attempt any one:

08

- (a) If $V = F^{(n)}$ with $(u, v) = \alpha_1 \bar{\beta}_1 + \alpha_2 \bar{\beta}_2 + \dots + \alpha_n \bar{\beta}_n$ where $u = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $v = (\beta_1, \beta_2, \dots, \beta_n)$, then prove that $\left|\alpha_1 \bar{\beta}_1 + \alpha_2 \bar{\beta}_2 + \dots + \alpha_n \bar{\beta}_n\right|^2 \le (|\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_n|^2)(|\beta_1|^2 + |\beta_2|^2 + \dots + |\beta_n|^2)$
- (b) If *V* is a finite-dimensional inner product space, then prove that *V* has an orthonormal set as basis.
- (B) Attempt any one:

07

(c) In the vector space $F^{(n)}$ define for the vectors.

$$u = (\alpha_1, \alpha_2, \dots \alpha_n)$$
 and $v = (\beta_1, \beta_2, \dots, \beta_n)$,
 $(u, v) = \alpha_1 \bar{\beta}_1 + \alpha_2 \bar{\beta}_2 + \dots + \alpha_n \bar{\beta}_n$,

then show that this defines as inner product on $F^{(n)}$.

(d) If F_2 is a family of polynomials of degree 2 at most. Define and inner product on F_2as :

$$(p(x), q(x)) = \int_0^1 p(x)q(x)dx$$

If $\{1, x, x^2\}$ is a basis of the inner product space on F_2 . Find an orthonormal basis from this basis.

1

B-2166 05
127 6 20 6 61
ers
span has a
05
11/200 90 10 VO
nich is not
Helf 18 Hot
10
10
200
e of W in
for all
. 101 un

Q.3 (A) Attempt any one

- (a) If a, b, c are real numbers such tha a > 0 and $a\lambda^2 + 2b\lambda + c \ge 0$ for all real numbers $\lambda \ge 0$, then prove that $b^2 \le ac$.
- (b) If $v_1, v_2, ... v_n \in V$ are linearly independent, then prove that every element in their span has a unique representation in the form $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$ with the $\lambda_i \in F$.
- (B) Attempt any one:
 - (c) If A and B are submodules of M, then prove that

$$A + B = \{a + b | a \in A, b \in B\}$$

is a submodule of M.

- (d) If V is finite-dimensional vector space and T is a homomorphism of V into itself which is no onto, then prove that there is some $v \neq 0$ in V such that T(v) = 0.
- Q.4 Choose the correct alternative and rewrite the sentence
 - 1. A vector space with inner product is called.....
 - (a) dual space
 - (b) second dual space
 - (c) inner product space
 - (d) annihilator
 - 2. If V is an inner product space over F, then for $v \in V$, $\alpha \in F$, we have $\|\alpha u\| = \dots$
 - (a) $\alpha^2 \|u\|$
 - (b) $\alpha \|u\|$
 - (c) $\alpha \| \|u\|$
 - (d) $|\alpha| ||u||$
 - 3. If W is a subspace of a vector space V over the field F, and if V/W is quotient space of W in V, then vector addition on V/W is defined as $(u + W) + (v + W) = \dots$ for all $u, v \in V$.
 - (a) (u + v) + W
 - (b) (u v) + W
 - (c) u v
 - (d) u + v
 - 4. If V is a vector space over a field F, then the elements of F are called......
 - (a) Scalars
 - (b) Vectors
 - (c) linearly independent vectors
 - (d) linearly dependent vectors
 - 5. The norm of the vector (1, 0, -1) is
 - (a) 0
 - (b) -1
 - (c) 1
 - (d) $\sqrt{2}$