Total No. of Printed Pages:02

SUBJECT CODE NO:- B-2165 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. T.Y (Sem.-VI) Examination OCT/NOV 2019 Mathematics MAT-601 Real Analysis-II

[Time: 1:30 Minutes] [Max.Marks:50]

N.B

Please check whether you have got the right question paper.

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- Q.1 A) Attempt any one:

08

- a) if (M,p) is a complete metric space for each $n \in I$, if F_n is a closed bounded subset of M such that $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq F_{n+1} \supseteq \cdots$ and diam. $F_n \to 0$ as $n \to \infty$, then prove that $\bigcap_{n=1}^{\infty} F_n$ contains precisely one point.
- b) If f is a continuous function from the compact metric space M_1 into a metric space M_2 , then prove that the range $f(M_1)$ of f is also compact.
- B) Attempt any one:

07

- d) If A and B are open subsets of R^1 , then prove that $A \times B$ is a open subset of R^2 .
- Q.2 A) Attempt any one

08

- a) If $f \in \Re[a, b]$ and a < c < b, then prove that $f \in \Re[a, c], f \in \Re[c, b]$ and also prove $\int_a^b f = \int_a^c f + \int_c^b f$
- b) If the series $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly to f(x) on $[-\pi, \pi]$, then prove that it is the Fourier series for f(x) on $[-\pi, \pi]$.

07

- B) Attempt any one:
- c) Show that: $\lim_{n\to\infty} \frac{1}{n} \left[\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\frac{2\pi}{n} \right] = \frac{2}{\pi}$
- d) Find the Fourier series expansion for f(x) = |x| in $[-\pi, \pi]$.
- Q.3 A) Attempt any one:

05

- a) If A is subset of the metric space (m, ρ) , and if (a, ρ) is compact, then prove that A is closed subset of (m, ρ) .
- b) If f'(x) = 0 for every x in the closed bounded interval [a,b], then prove that f is constant on [a,b].

1

B-2165 2019

B) Attempt any one:

05

- c) If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by f(x, y) = (y, x) for all $(x, y) \in \mathbb{R}^2$, then show that f is continuous on R^2 .
- d) Prove that: $\frac{2\pi^2}{9} \le \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{2x}{\sin x} dx \le \frac{4\pi^2}{9}$.
- **Q.4** Choose the correct alternative and rewrite the sentence:

- 1) The discrete metric space (R, d) is denoted by
 - a) R^d
- b) R_d
- c) R^1
- 2) in a metric space M the subset E of M is closed if _____, a) $E \subseteq \overline{E}$ b) $E = \phi$ c) $E = \overline{E}$ d) $E = R^1$

- 3) Union of infinite number of closed subsets of metric space
 - a) Closed set

b) Both open and closed set

c) Compact set

- d) need not be closed set
- 4) if f is continuous on [a,b], then three exists $c \in (a,b)$ such that $\int_a^b f(x)dx =$
 - a) f(a)(b-c)c) f(c)(b-a)

- b) f(b)(c-a)d) f(c)(b+a)
- 5) For all n, $\int_{-\pi}^{\pi} \cos x dx =$ _____.

 a) $-\pi$ b) π c) 0