Total No. of Printed Pages: 2 ## SUBJECT CODE NO: - Y-2191 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. (PATTERN-2013) (F.Y SEM II) Examination April / May - 2024 Zoology Paper-V Genetics - I | | | | oology Paper | -v Genetics - I | | | |---------------|----------|------------------------------------|----------------|--|--|---| | [Time | :1:30 H | ours] | | | [Max. Marks:5 | 0 | | | | Please check wh | ether you hav | e got the right question pa | 40. 보호 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1 | | | N. B | | 1) Attempt all qu | estions | | | | | | | 2) Illustrate your | answer with | suitable labelled diagram. | | | | | | | | | | | | Q. | 1 Defin | e Law of Independent as | ssortment wit | h suitable example. | 20 |) | | | | | | and a soft suggested one fore | | | | | | | reliquito / vi | OR | | | | | Triplo | oid intersexes and Gynar | ndromorphs in | n Drosophila | | | | | | | | SWON THE GENERAL SOL | | | | Q. | 2 Define | e Gene Mutation. Descr | ibe types of g | ene mutations | 20 |) | | | | | | | to the second of | | | | | | (| OR | | | | | Write | short notes on: (any fe | | | | | | | | | | | | | | | a) | Test Cross | | Andrews Control of the th | | | | | b) | Supplementary Genes | | | | | | | c) | Coat colour in Rabbit | | | | | | | d) | CO ₂ Sensitivity in Dro | sophila | | | | | | e) | Y-linked - Sex linked | | | | | | | f) | Spontaneous mutations | 3 | | | | | | | | | and the second second second | | | | 0.3 | Select | and Write correct ans | wer from the | e given alternatives in eac | ch sub question 10 | | | ili i equient | | Sa are and the statement of | | And Andrews Comment of the o | n sub-question 10 | | | | 1) | When sudden genetic of | hange occurr | ed in organism and expres | sed in the | | | | | phenotype is called as | | A STATE OF THE STA | | | | | | a) Heredity | 2001 | b) Mutation | | | | | | c) Variation | 15 | d) Domination | | | | | | | 6914 B | | | | | | 2) | Lors of part of chromo | some is called | l as | | | | | | a) Deletion | b) Dupli | cation | | | | | | c) Inversion | Processor. | d) All of these | | | | | | | | | | | | | 3) | Organism having more | than two con | nplete sets of chromosome | s is known | | | | | | | | | | | od a series | a) Polyploidy | | b) Euploidy | | |-------------|--|---|--|------| | STEMP S | c) Aneuploidy | | d) None | | | 1.61 | | | a i Barto de Tario de Conderio, incluir de la como de l
La como de la l | | | 4) W | hich is a sex linked | disease in man? | | | | | a) Colour blindnes | | b) Beriberi | | | | c) Sickle cell anae | 等解析的 医多种性 医乳桂皮脂肪 医多种 | F. S. C. R. R. S. R. M. R. | | | | No. | | | | | 5) A | n Universal donor ha | as this type of blo | ood group. | | | | a) I ^o I ^o | b) I ^A I ^A | The second secon | | | | c) I ^B I ^B | d) I ^{AB} I ^{AB} | | | | | 7 June 77 (1960) | | | | | 6) 9: | 7 ratio in F ₂ generati | ion is an example | e of | | | | a) Incomplete don | | b) Co- dominance | | | | c) Epistasis | | d) Complementary genes | 3 | | | | | | | | | | | | | | 7) A | cross between pea c | comb and single | comb chicken in F2 genera | tion | | | cross between pea c io is | comb and single | comb chicken in F ₂ genera | tion | | | | b) 9:3:3:1 | comb chicken in F2 genera | tion | | | io is | | comb chicken in F2 genera | tion | | rat | io is
a) 1:2:1
c) 9:7 | b) 9:3:3:1
d) 9:3:4 | i menera Sandania
S | tion | | rat | io is
a) 1:2:1
c) 9:7
he characters not exp | b) 9:3:3:1
d) 9:3:4 | eration is called as | tion | | rat | io is
a) 1:2:1
c) 9:7 | b) 9:3:3:1
d) 9:3:4 | eration is called as
b) Recessive | | | rat | io is
a) 1:2:1
c) 9:7
he characters not exp | b) 9:3:3:1
d) 9:3:4 | eration is called as | | | rat | io is
a) 1:2:1
c) 9:7
he characters not exp
a) Dominant
c) Sex linked | b) 9:3:3:1
d) 9:3:4
pressed in F ₁ gen | eration is called as
b) Recessive | | | rat | a) 1:2:1 c) 9:7 ne characters not exp a) Dominant c) Sex linked nenotypic mutations | b) 9:3:3:1
d) 9:3:4
pressed in F ₁ gen | eration is called as
b) Recessive
d) Cytoplasmic inheritand | | | rat | a) 1:2:1 c) 9:7 the characters not exp a) Dominant c) Sex linked thenotypic mutations a) Dominant | b) 9:3:3:1
d) 9:3:4
pressed in F ₁ gen | eration is called asb) Recessive d) Cytoplasmic inheritance b) Recessive | | | rat | a) 1:2:1 c) 9:7 ne characters not exp a) Dominant c) Sex linked nenotypic mutations | b) 9:3:3:1
d) 9:3:4
pressed in F ₁ gen | eration is called asb) Recessive d) Cytoplasmic inheritance b) Recessive | | | 9) Ph | a) 1:2:1 c) 9:7 the characters not exp a) Dominant c) Sex linked menotypic mutations a) Dominant c) Is allelic | b) 9:3:3:1
d) 9:3:4
pressed in F ₁ gen
are
d) All of t | eration is called as
b) Recessive
d) Cytoplasmic inheritand
b) Recessive
hese | | | 9) Ph | a) 1:2:1 c) 9:7 the characters not exp a) Dominant c) Sex linked thenotypic mutations a) Dominant | b) 9:3:3:1 d) 9:3:4 bressed in F ₁ gen are d) All of t | eration is called as b) Recessive d) Cytoplasmic inheritance b) Recessive hese | |