Total No. of Printed Pages: 3

SUBJECT CODE NO: - Y-2014 FACULTY OF SCIENCE AND TECHNOLOGY B.Sc. F.Y (Sem-I)

Examination March / April - 2023 Physics Paper-II Heat and Thermodynamics

[Time:	: 1:3	0 Hours] [Max. Mark	is: 5
		Please check whether you have got the right question paper.	
N. B		1) Attempt all questions.	
11. D		2) Use of logarithm table & electronic pocket calculator is allowed.	
Q1	a)	Derive the Fourier's differential equation by using. Rectilinear flow of heat along a metal bar.	10
	b)	Derive an expression for the viscosity (n) of a gas in terms of mean free path of its molecules.	10
		OR P P	
970	c)	Describe Carnot's cycle and deduce the efficiency of an ideal heat engine.	10
	d)	prove that the thermodynamics relations.	
		i) $T.ds = CvdT + T(\frac{\partial P}{\partial T})_V dv$	10
		ii) $T. ds = CvdT - T(\frac{\partial P}{\partial T})_P dp$	
Q2	a)	Write a short note on transference of Heat.	05
	b)	The opposite faces opposite face of a metal plate of 0.3cm thickness are at a difference of temperature of 100°c and the area of the plate is 200 sq. cm. Find the quantity of heat that will flow through the plate in one minute if (K=0.2 CGS units).	05
	c)	Explain the concept of reversible and irreversible process.	05
	d)	Calculate the work done when a gram molecule of a gas expands isothermally at 27°C to double its original volume. Given R=8.3 Joule deg ⁻¹ mole ⁻¹	05
		OR	05
	a)	Give the reason for modification of a gas equation.	

- b) Calculate the mean free path of a gas molecule. Given that the radius of a gas 05 molecule is 3A. U. and number of molecules is $1.8 \times 10^{25} \ per \ m^3$
 - 05
- c) Explain second law of thermodynamics in terms of entropy.
- d) Calculate the change in entropy when log of ice at 0°C is converted into water at 05 same temperature (Latent heat of ice = $80 \frac{cal}{q}$)
- Q3 Multiple choice questions.

- 1. The dimension of thermal resistance is
 - a) $M^{-1}L^{-2}T^3\theta^1$

c) $M^1L^{-2}T^{-3}\theta^1$

- d) $M^2L^2T^{-3}\theta^{-2}$
- 2. In Ingen-Hauz experiment the thermal Conductivity 'k' and length 'l' of the rod up to which wax melts are related as.
 - a) $\frac{k}{l} = constant$

b) $\frac{k}{l^2} = constant$

c) $\frac{k^2}{l}$ = constant

- d) kl = constant
- Vander Waal's equation is
 - a) $\left(P + \frac{a}{v^2}\right)(v+b) = RT$
- b) $(p-b)\left(V+\frac{a}{v^2}\right) = RT$
- $\left(P + \frac{v^2}{a}\right)(v b) = RT$
- d) $\left(P + \frac{a}{v^2}\right)(v b) = RT$
- The coefficient of viscosity is independent on
 - a) Temperature
- b) pressure
- c) density
- d) mean free path
- An ideal heat engine exhausting heat at 127°C is to have 27% efficiency. It must take heat at
 - a) 127.9°C
- b) 137.9°C
- c) 247°C
- d) 327°C

- The work done during an adiabatic process is
 - a) $W = \frac{p_1 v_{1-p_2 v_2}}{v-1}$

b) $W = \frac{p_1 v_{1-p_2 v_2}}{1-v}$

c) $W = \frac{nR(T_{1-T_2})}{v-1}$

- d) Both a and c
- A gas expands by 0.25m^3 at constant pressure 10^5N/m^2 . The work done by the gas
 - a) 250J
- b) 2500J
- c) 25000J
- d) 250000J

- 8. Which of the following represent a reversible process?
 - a) ds < 0
- b) ds = 0
- c) ds > 0
- d) $ds \ge 0$

- 9. The clausius clapeyron equation is
 - a) $\frac{dP}{dT} = T.L(v_2 V_1)$

b) $\frac{dP}{dT} = \frac{T}{L(v_2 - V_1)}$

b) c) $\frac{dP}{dT} = \frac{L}{T(v_1 - V_2)}$

- d) $\frac{dP}{dT} = \frac{L}{T(v_2 V_1)}$
- 10. Entropy is maximum in which state
 - a) Solid
- b) Liquid
- c) gas
- d) All of these