Total No. of Printed Pages: 02

SUBJECT CODE NO: - YY-2349 FACULTY OF SCIENCE AND TECHNOLOGY

B. Sc. F.Y (Sem-II)

Examination March / April - 2023 Mathematics Paper -III Number Theory

[Tin	ne: 1	1:30 Hours]	[Max. Marks: 4
N. B		Please check whether you have got the right question paper. 1) All questions are compulsory. 2) Figures to the right indicate full marks.	
Q1	Δ	Attempt any one:	
Ų1	71.	a. If $m > 0$, then prove that $[ma, mb] = m[a, b]$ b. If plab, P being a prime, then prove that p/a or p/b .	05 05
	B.	Attempt any one: c. Find the greatest common divisor of 7469 and 2464. d. Prove that $n^3 - n$ is divisible by 6.	05 05
Q2./		Attempt any one:	
Q2	Л.	a. If $ax \equiv ay \pmod{m}$ and $(a, m) = 1$, then prove that $x \equiv y \pmod{m}$	d m). 05
		b. If P is a prime, then prove that $(p-1)! \equiv -1 \pmod{p}$	05
	B.	Attempt any one c. Prove that if P is a prime and $a^2 \equiv b^2 \pmod{p}$, then prove that $p \mid a + b or \ p \mid a - b$.	05
		d. Find all integers that satisfy simultaneously : $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 5 \pmod{2}$	05
Q3	٨	Attempt any one	
	A.	a. If x is real number, then prove that $[x] \le x < [x] + 1, x - 1 < [x] \le x, 0 \le x - [x] < 1.$	05
		b. For every positive integer n, $\sum_{d/n} \Phi(d) = n$	05
	В.	Attempt any one	
		c. Prove that $\mu(n)\mu(n+1)\mu(n+2)\mu(n+3) = 0$, n is positive integ	er. 05
		d. Find all integers x and v such that $147x + 258v = 369$	05

Q4 Choose the correct alternative and rewrite the sentences:

10

- 1. If a and b are integers with a > 0 then there exist unique integers q and r such that b = qa + r, whree
 - a. $o \le r \le a$
- b. $o \le r \le a$
- c. $o < r \le a$
- d. o < r < a
- 2. The product of any three consecutive integers is divisible by
- b. 5
- c. 6
- d. 7
- 3. If m is positive integer then $a \equiv b \pmod{m}$ if and only if _
 - a. m/a + b
- b. m/a b
- c. m/ab
- d. m/ma + b
- 4. If d(n) denotes the _____ positive divisors of n, then d(12)=
- b. 24
- c. 12
- 5. If μ is a Mobious function then $\mu(8) =$
- b. 1
- c. 0
- d. 8