Total No. of Printed Pages: 02

SUBJECT CODE NO: - Y-2050 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. S.Y (Sem-III)

Examination March / April - 2023 Mathematics MAT - 301 Number Theory

[Time: 1:30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

N. B

- i) All questions are compulsory.
- ii) Figures to the right indicate full marks.
- Q1 (a) Attempt any **one** of the following:

08

i. Given two integers a and b, with b > 0, then prove that there exist unique integers q and r such that

$$a = qb + r, 0 \le r \le b.$$

- ii. If k > 0, then prove that gcd(ka, kb) = k gcd(a, b).
- (b) Attempt any **one** of the following:

07

- i. By using the Euclidean algorithm, find the values of integers x and y satisfying gcd(119, 272) = 119x + 272y.
- ii. If a and b are both odd integers, the prove that $16 \mid a^4 + b^4 2$.
- Q2 a) Attempt any **one** of the following:

08

- i. If n > 1 is a fixed integer and a, b, c, d are arbitrary integers, then prove that α) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$. β) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
- ii. State and prove Fermat's theorem
- b) Attempt any **one** of the following:

07

i. Solve the following set of simultaneous congreunces

$$x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}.$$

ii. Find the remainder when 15! is divided by 17.

Q3 (a) Attempt any **one** of the following:

05

- i. Prove that the functions σ and τ are multiplicative functions.
- ii. If $n \ge 1$ and gcd(a, n) = 1, then prove that $a^{\phi(n)} = 1 \pmod{n}$.
- (b) Attempt any **one** of the following:

05

- i. Find $\phi(36000)$.
- ii. Prove that any prime of the form 3n + 1 is also of the form 6m + 1.
- Q4 Choose the correct alternative and rewrite the sentence:

10

a) Two integers a and b not both of which are zero are said to be relatively prime, if -

- i) gcd(a,b) = 0
- ii) gcd(a,b) = 1
- iii) gcd(a,b) = a
- iv) gcd(a,b) = b
- b) If d = gcd(a, n), then the linear congreunce $ax \equiv b(modn)$ has a solution if and only if
 - i) d|a
 - ii) d|b
 - iii) b|d
 - iv) a|d
- c) The value of $(30) = \dots$
 - i) 1
 - ii) 0
 - iii) 3
 - iv) -1
- d) If n is even integer, then $\phi(2n) =$
 - i) $2\phi(n)$
 - ii) 2*n*
 - iii) n
 - iv) $\phi(n)$
- e) A composite integer *n* is called a pseudoprime, if
 - i) $n|2^n + 2$
 - ii) $n | 2^n 2$
 - iii) $n|2^{n}-1$
 - iv) $n \mid 2^n$