Total No. of Printed Pages: 2

SUBJECT CODE NO: - Y-2065 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. S.Y Sem-IV

Examination March / April - 2023 Mathematics MAT - 401 Numerical Methods

[Time: [1.30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

N.B

- 1) Attempt all questions
- 2) Figure to the right indicate full marks
- 3) Use of non-Programmable calculator and logarithmic table is allowed
- Q1 A) Attempt any one

08

- a) Explain the bisection method for finding real roots of an equation f(x)=0
- b) Derive Newton's forward difference interpolation formula
- B) Attempt any one

റ

- c) Use the Newton-Raphson method to find a root of the equation $x^3 2x 5 = 0$ which lies between 2 and 3
- d) Using Newton divided difference formula find f(x) as a polynomial in x. given data is

0	x		-1	3	0	3	6	7 0
7	f(x)	Y	3	17	-6	39	822	1611

Q2 A) Attempt any one

08

- a) Explain the method of fitting a straight line $Y = a_o + a_1 x$
- b) Explain the method of factorization to solve the system of linear equations
- B) Attempt any one
 - c) Determine the constant a and b by the method of least squares

07

Such that $y = ae^{bx}$ fits the following data

2	X	10	2	4	6	8	10
	y	89	4.077	11.084	30.128	81.897	222.62

d) Solve the following system

$$2x+y+z=10$$

$$3x+2y+3z=18$$

$$x+4y+9z=16$$

By Gaussian elimination method

Q3 A) Attempt any one

a) Explain Taylor's series method to solve the differential equation

$$y'=f(x,y)$$

with the initial condition $y(xo) = y_0$

b) With the usual notations prove that

$$\mu \equiv \left[1 + \frac{1}{4}\delta^2\right]^{\frac{1}{2}}$$

- B) Attempt any one
 - c) Using Picard's method obtain the solution of

$$\frac{dy}{dx} - 1 = xy \text{ with } y(0) = 1$$

And compute y(0.1) correct to four decimal places

d) Show that

$$e^{x} \left(u_{o} + x \Delta u_{0} + \frac{x^{2}}{2!} \Delta^{2} u_{o} + - - - - \right)$$
$$= u_{0} + u_{1} x + u_{2} \frac{x^{2}}{2!} + - - - -$$

Choose the correct alternative

10

- Which of the following is transcendental equation?
 - a) $x^3 x 1 = 0$ b) $x^3 + x + 1 = 0$ c) $x^3 2x^2 + 1 = 0$ d) $xe^x + sinx = 0$
- If δ is central difference operator then $\delta y_{\underline{3}} = ----$

a)
$$y_1 - y_0$$
 b) $y_2 - y_1$ c) $y_3 - y_2$ d) $y_4 - y_3$

c)
$$y_3 - y_2$$
 d) $y_4 - y_3$

- If $y(x) = 2x^2 + x 1$, then $\Delta^3 y(x)$ is ----

 - a) 0 b) 1 c) 2
 - d) 3
- The chebyshev polynomial of degree two is ----
 - a) 1
- b) x
- c) $2x^2 1$ d) $2x^2 + 1$
- If $A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$ then the characteristic polynomial is ------

 - a) $\lambda^2 + \lambda 2$ b) $\lambda^2 \lambda + 2$ c) $\lambda^2 + 2 \lambda + 1$ d) $\lambda^2 2\lambda 1$