Total No. of Printed Pages: 03

SUBJECT CODE NO: - Y-2047 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. T.Y (Sem-V)

Examination March / April - 2023 Mathematics MAT - 502 Abstract Algebra - I

[Time: 1:30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

- N. B 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.

Q1 A) Attempt any one:

08

- a) If H is a subgroup of a group G, then for a, $b \in G$ prove that the relation $a \equiv b$ mod H is an equivalence relation.
- b) If ϕ is a homomorphism of a group G into group \bar{G} with Kernel K, then prove that K is a normal subgroup of G.
- B) Attempt any one:

07

c) If G is a group in which

$$(a.b)^i = a^i.b^i$$

for three consecutive integers i, for all a, $b \in G$, show that G is abelian.

d) Let G be a group and g is a fixed element in G. Define $\phi: G \to G$ by $\phi(x) = gx9^{-1}$. Prove that ϕ is an isomorphism of G onto G.

Q2 A) Attempt any one:

08

- a) If ϕ is a homomorphism of a ring R into ring R'with Kernel $I(\phi)$, them prove that
 - i. $I(\phi)$ is a subgroup of R under addition.
 - ii. If $a \in I(\phi)$ and $r \in R$, then both ar and ra are in $I(\phi)$
- b) Prove that if R is a commutative ring with unit element whose only ideals are (0) and R itself, then R is a field.

B) Attempt any one:

07

- c) Prove that any field is an integral domain.
- d) If U and V are ideal of R, and if $U + V = \{u + v / u \in U \text{ and } v \in V\}$ Prove that U+V is also an ideal.
- Q3 A) Attempt any one:

05

- a) If H and K are subgroups of a group G and $O(H) > \sqrt{O(G)}$, $O(K) > \sqrt{O(G)}$, then prove that $H \cap K \neq (e)$.
- b) If R is a commutative ring with unit element 1 and R/U is quotient ring then prove that
 - i. R/U is commutative
 - ii. R/U has a unit element 1+U
- B) Attempt any one:

05

- c) If N and M are normal subgroups of a group G, prove that NM is also a normal subgroup of G.
- d) If R is ring with unit element 1 and ϕ is a homomorphism of R into R' prove that $\phi(1)$ is the unit element of R'
- Q4 Choose the correct alternative:

10

- i. If N is normal subgroup of a group G such that O(G)=6 and O(N)=3, then O(G/N)=
 - a) 3
 - b) 2
 - c) 9
 - d) 18
- ii. For any two elements a and b of a group G, if $(a.b)^2 = a^2.b^2$, then G is _____
 - a) Abelian group
 - b) Quaternion group
 - c) Quotient group
 - d) None of these

111.	If G is	a group and for $x \in G$, $U(x) = n$ and $x^m = e$, then
	a)	m=0
	b)	m divides n
	c)	n divides m
	d)	none of these
iv.	If an ir	ntegral domain D is of finite characteristic, then its characteristic is
	a)	A composite number
	b)	A prime number
	c)	Any integer S
	d)	None of these
v.	If M is	a maximal ideal of a commutative ring R with unit element, then
	a)	R/M is a field
	(b)	R/M is not a field
	c)	R is a field
	1\	