8

7

Total No. of Printed Pages: 3

SUBJECT CODE NO: - Y-2115 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. T.Y (Sem-V)

Examination March / April - 2023 Ordinary Differential Equation -I 504

[Time: 1:30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

- N.B
- 1) All questions are compulsory.
- 2) Figure to the right indicate full marks.

Q1 A) Attempt any one:

a) Suppose a and b are continuous functions an interval I. Let A be a function such 8 that A'= a.

The function Ψ given by

$$\Psi(x) = e^{-A(x)} \int_{x_0}^x e^{A(t)} b(t) dt.$$

Where x_0 is in I, is a solution of the equation y' + a(x)y = b(x) on I.

The function ϕ , given by ϕ , $(x) = e^{-A(x)}$ is a solution of the homogeneous equation y' + a(x)y = 0.

Prove that if c is any constant,

$$\phi = \Psi + c \phi$$
, is a solution of $y' + a(x)y = b(x)$.

- b) Consider the equation y' + ay = 0, where a is a complex constant if c is any complex number. Prove that the function φ define by $\varphi(x) = c e^{-ax}$ is a solution of the equation y' + ay = 0.
- B) Attempt any one:
 - c) Find all solution of the equation $y' 2y = x^2 + x$.
 - d) Consider the equation $Ly' + Ry = Ee^{iwx}$, where L,R,E,W are positive constant. Find the solution φ which satisfies $\varphi(0) = 0$.

Q2 A) Attempt any one:

a) If ϕ_1 , ϕ_2 are two solution of $y'' + a_1y' + a_2y = 0$ on an interval I containing a 8 point x_0 then prove th

$$w(\phi_1, \phi_2)(x) = e^{-a1(x-x_0)}.w(\phi_1, \phi_2)(x_0)$$

10

- b) Let a_1 , a_2 be constants and consider the equation $L(y) = y'' + a_1 y' + a_2 y = 0$. 8 If r_1 , r_2 are distinct roots of the characteristics polynomial P, where $P(r) = r^2 + a_1 r + a_2$ then prove that the function ϕ_1 , ϕ_2 define by $\phi_1(x) = e^{r_1 x}$, $\phi_2(x) = e^{r_2 x}$ are solution of L(y) = 0.
- B) Attempt any one:
 - c) Find all solutions of the equation y'' 2y' 3y = 0, y(0) = 0, y'(0) = 1.
 - d) Determine whether the functions $\phi_1(x) = \cos x$, $\phi_2(x) = 3(e^{ix} + e^{-ix})$ are linearly dependent or independent.
- Q3 A) Attempt any one:
 - a) If z_1 and z_2 are two complex numbers then prove that $||z_1| |z_2|| \le |z_1 z_2|$
 - b) Prove that $e^{i\theta} = \cos\theta + i\sin\theta$.
 - B) Attempt any one:
 - c) If r is such that $r^3 = 1$ and $r \ne 1$. Prove that $1 + r + r^2 = 0$.
 - d) If z = x + iy, where x, y are real, show that $|e^z| = e^x$.
- Q4 Choose the correct alternative of the following.
 - 1) $\frac{1+i}{1-1} =$ ____ a) -1 b) 0 c) i d) None of these
 - 2) All solution of the equation $y'' = x^2$. $on \infty < x < \infty$ a) $\varphi(x) = \frac{x^4}{12} + Gx^2 + C_2$.
 - b) $\phi(x) = \frac{x^4}{12} + Gx + C_2$.
 - c) $\phi(x) = \frac{x^3}{12} + Gx + C_2$.
 - d) None of these.
 - 3) If $\phi_1(x) = \cos x$, $\phi_2(x) = \sin x$ then $w(\phi_1, \phi_2)(x) = \dots$ a) 0 b) 1 c) $\cos x + \sin x$ d) None of these

- 4) All solutions of the equation y'' 4y = 0.
 - a) $\phi(x) = Ge^{4ix} + c_2e^{-4ix}$.
 - b) $\phi(x) = Ge^{4x} + c_2e^{-4x}$
 - c) $\phi(x) = Ge^{-4ix} + c_2e^{-4x}$
 - d) None of these
- 5) $\phi(x) = \sin 2x$ is a solution of the equation.
 - a) y'' + 4y = 0
 - b) y'' 4y = 0
 - c) y'' + 2y = 0
 - d) None of these