Total No. of Printed Pages: 02

SUBJECT CODE NO: - Y-2061 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. T.Y (Sem-VI)

Examination March / April - 2023

Mathematics MAT-601 Real Analysis-II [Time: 1: 30 Hours] [Max. Marks: 50] Please check whether you have got the right question paper. N.B 1) All questions are compulsory. 2) Figures to the right indicate full marks. Q1 A) Prove any one: a. Prove that every open subset G of R' can be written $G = \bigcup I_n$, where $I_1, I_2, ...$ Are a finite number or a countable number of open intervals which are mutually disjoint... b. Let $\langle M_1, P_1 \rangle$ and $\langle M_2, P_2 \rangle$ be metric spaces, and let $f: M_1 \to M_2$ Then prove that f is continuous on M_1 if and only if $f^{-1}(F)$ is closed subset of M_1 whenever F is a closed subset of M_2 B) Attempt any one c. For $P < x_1, y_1 > \text{and} < x_2, y_2 >$, define $\sigma(P, Q) = |x_1 - x_2| + |x_1 - x_2|$, show that σ is a metric for the set of ordered pairs of real numbers. d. Let f be the function from R^2 onto R^1 defined by $f(\langle x, y \rangle) = x \ (\langle x, y \rangle \in R^2)$ show that f is continuous on R^2 08 A) Attempt any one a. Let $\langle M_1, P_1 \rangle$ be a compact metric space if f is a continuous function from M_1 into a metric space $\langle M_2, P_2 \rangle$, then prove that f is uniformly continuous on M_1 b. If f is continuous on the closed bounded interval [a, b], and if $F(x) = \int_{a}^{x} f(t)dt \quad (a \le x \le b),$ Then prove that F'(x) = f(x) $(a \le x \le b)$ 07 Attempt any one c. Prove that every finite subset of any metric space is compact. d. Find the Fourier series for the function $f(x) = e^x$ in $-\pi < x < \pi$ A) Attempt any one 05 a. if A is a closed subset of the compact metric space < M, P>, then prove that the metric space <A, P> is also compact.

 $g \in R[a,b]$, and if $f(x) \le g(x)$ almost every where b. If $f \in R[a,b]$, $(a \le x \le b)$ then prove that $\int_a^b f \le \int_a^b g$

- B) Attempt any one
 - c. Let f(x) = x ($0 \le x \le 1$), Let σ be the subdivision $\{0, \frac{1}{3}, \frac{2}{3}, 1\}$ of [0,1] compute $L[f; \sigma]$
 - d. If $0 \le x \le 1$ show that

$$\frac{x^2}{\sqrt{2}} \le \frac{x^2}{\sqrt{1+x}} \le x^2$$

Q4 Choose the correct alternative

_10

- 1. The function P defined by p(x, y) = |x y| is a metric for the set R of real numbers, then the metric space $\langle R, P \rangle$ is denoted by ____
 - a. Rd
- b. *R*^{*d*}
- c. R^1
- $\mathrm{d}.R^{\infty}$
- 2. Every singleton set in a discrete metric space Rd is _____
 - a. Open
- b. closed
- c. open and closed
- d. none of these

- 3. The metric space R^1 is ----
 - a. Not complete
 - b. Totally bounded
 - c. Complete but not totally bounded
 - d. Complete and totally bounded
- 4. If f is Riemann integrable function on [a,b] and a<c<b, then _____

a.
$$\int_a^b f > \int_a^c f + \int_c^b f$$

b.
$$\int_a^b f < \int_a^c f + \int_c^b f$$

c.
$$\int_a^b f = \int_a^c f - \int_c^b f$$

d.
$$\int_a^b f = \int_a^c f + \int_c^b f$$

5. When m=n, for n=0,1, 2

$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \cdots$$

- a. (
- b. 1
- $e^{-\pi}$
- d 1