Total No. of Printed Pages: 02

SUBJECT CODE NO: - Y-2062 FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. T.Y (Sem-VI)

Examination March / April - 2023 Mathematics MAT - 602 Abstract Algebra - II

[Time: 1:30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

- N. B
- 1) All questions are compulsory.
- 2) Figure to the right indicate full marks.
- Q1 A. Attempt any one:

08

- a. If T is homomorphism of a vector space U onto a vector space V with kernel W, then prove that V is isomorphic to U/W
- b. Prove that if $v_1, v_2, ... v_n$ are in vector space V. then either they are linearly independent or some V_k is a linear combination of the preceding ones, v_1 ,

$$V_2, \ldots V_{k-1}$$

B. Attempt any one

07

c. Let F be the field of all real numbers and let V be set of all sequences

$$\{(a_1, a_2, \dots a_n, \dots), |a_i^2 \in F\}$$
If $U = \{(a_1, a_2, \dots a_n, \dots), EV | \sum_{i=1}^{\infty} a_i^2 \text{ is finite} \}$ then prove that U is a subspace of V.

- d. If T is an isomorphism of vector space V onto vector space W, then prove that T maps a basis of V onto a basis of W.
- Q2 A. Attempt any one:

08

- a. If W is subspace of finite-dimensional vector space V over F, then prove that A(A(W)) = W.
- b. Prove that if V is finite-dimensional inner product space, then V has an orthonormal set as a basis.
- B. Attempt any one:

07

c. Let V be the set of all continuous complex-valued function on the closed unit interval [0,1]. If $f(t), g(t) \in V$, such that

$$(f(t),g(t) = \int_0^1 f(t)$$

Prove that this define an inner product on V.

d. If A and B are submodules of on R Modules M, then prove that $A + B = \{a + b \mid a \in A, b \in A\}$ is a submodule of M.

Q3	 A. Attempt any one: a. If W is a subspace of an inner product space V, then prove that W[⊥] is a subspace of V. b. If V is vector space over F and v₁, v₂,, v_n ∈ V are linearly independent then prove that every element in their linear span has a unique representation 	05
	in the from $\lambda_1 V_1 + \lambda_2 V_2 + \underline{\hspace{1cm}} V_n V_n$ with the $\lambda_i EF$.	
	 B. Attempt any one: c. If V is finite-dimensional and W₁and W₂are subspaces of V, describe A(W₁ ∩ W₂) in terms of A(W₁) and A(W₂) d. If F is the field of real numbers, prove that the vectors (1, 1, 0, 0), (0,1, -1, 0) and (0, 0,0, 3) in F⁽⁴⁾ are linearly independent over F. 	05
Q4	 Choose correct alternatives: - 1. In an inner product space V, the inequality (u, v) ≤ u . v is called a. Triangle inequality b. Bessel's inequality c. Schwarz inequality d. none of these 	10
	2. If V is a finite decisional vector space and \hat{v} is its dual space then a. Dim $\hat{v} = sim V$ b. Dim $\hat{v} > sim V$ c. Dim $\hat{v} < sim V$ d. none of these	
Si)	3. A subset S of a vector space V over F form basis if S is linearly independent and a. L(S)=S b. L(S)=V c. L(S)=F d) none of these	
	4. Every subspace of a vector space V other than (0) and V is called a. Improper subspace b. proper subspace c. dual space d. none of these	
9	5. Vector space is defined over a	