Total No. of Printed Pages: 03

SUBJECT CODE NO: - Y-2123 FACULTY OF SCIENCE AND TECHNOLOGY R So, T.Y. (Som, VI)

B.Sc. T.Y (Sem-VI)

Examination March / April - 2023 Ordinary Differential Equation-II - MAT- 604

[Time: 1:30 Hours] [Max. Marks: 50]

Please check whether you have got the right question paper.

- N.B
- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- Q1 A) Attempt any one:

08

a) Let ϕ_1 , ϕ_2 ,, ϕ_n be the n solutions of $L(y) = y^n + a_1 y^{(n-1)} + --- + a_n(x)y = 0 \text{ on I satisfying}$ $\phi_i^{(i-1)}(x_0) = 1 , \phi_i^{(j-1)}(x_0) = 0 , j \neq i$

Prove that ϕ is any solution of L(y)=0 on I, three are n constant C_1 , $C_2 - - C_n$ Such that $\phi = C_1 \phi_1 + C_2 \phi_2 + - - + C_n \phi_n$

- b) Let ϕ_1 , ϕ_2 ..., ϕ_n be n solutions of $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = 0 \text{ on Interval I, and let } x_0 \text{ be}$ any point in I then Prove that $W(\phi_1, \phi_2, \dots, \phi_n)(x) = \exp\left[-\int_{x_0}^x a_1(+)dt\right]$ $W(\phi_1, \phi_2, \dots, \phi_n)(x_0)$
- B) Attempt any one

07

c) Consider the equation

$$y'' + \frac{1}{x} y' + \frac{1}{x^2} y = 0$$
 for $x > 0$

- I. Show that there is a solution of the form x^r , where r is constant.
- II. Find two linearly independent solutions for x > 0 and prove that they are linearly independent.
- III. Find two solutions ϕ_1 , ϕ_2 satisfying

$$\phi_1(1) = 1$$
 , $\phi_2(1) = 0$
 $\phi_1^1(1) = 0$, $\phi_2^1(1) = 1$

d) Find all solutions of

$$xy'' - (x+1)y' + y = 0$$
 given that one solutions is $\phi_1(x) = e^x(x > 0)$

Q2 A) Attempt any one

08

a) Let b be continuous on an interval I. Let ϕ_1 , ϕ_2 , ..., ϕ_n be the basis for the solution of $L(y) = y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_n(x) y = 0$

Prove that every solution ψ of L(y) = b(x) can be written as:

$$\psi = \psi_p + C_1\phi_1 + C_2\phi_2 + \dots + C_n\phi_n$$

Where ψ_p is particular solution of L(y)=b(x) and \mathcal{C}_1 , \mathcal{C}_2 ... \mathcal{C}_n are constants

Every such ψ is solution of L(y) = b(x)

A particular solution $\psi(P)$ is given by

$$\psi_p = \sum_{k=1}^n \phi_k(x) \int_{x_0}^x \frac{W_k(+)b(+)}{W(\phi_1, \phi_2 \dots \phi_n)t} dt$$

b) Consider the second order Euler equation $x^2y'' + axy' + by = 0$ (a ,b constant) and polynomial q is given by q(r) = r(r-1) + ar + bProve that basis for the solution of Euler equation on any interval not containing x = 0 is given by $\phi_1(x) = |x|^{r_1}$, $\phi_2(x) = |x|^{r_2}$ in case $r_1 \& r_2$ are distinct root of q.

്റ

- B) Attempt any one:
 - c) Show that there is basis ϕ_1 , ϕ_2 for the solution of $xy'' + 4xy' + (2 + x^2)y = 0$ (x > 0) of the form $\phi_1(x) = \frac{\psi_1(x)}{x^2}$, $\phi_2(x) = \frac{\psi_2(x)}{x^2}$
 - d) Find the linearly independent power series solution of the equation y'' xy = 0
- Q3 A) Attempt any one:

05

a) Show that

$$\int_{-1}^{1} P_n(x) P_m(x) = 0 \quad (n \neq m)$$

- b) Find all solutions of the equation $x^2y'' + 2xy^1 6y = 0$ (x > 0)
- B) Attempt any one

05

- c) Find the singular point of the equation $x^2y'' + (x + x^2)y^1 y = 0$ and determine those which are regular singular point.
- d) Find all solutions ϕ of the form

$$\phi(x) = |x|^r \sum_{k=0}^{\infty} C_k x^k (|x| > 0) \text{ for the equation}$$

$$x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$$

10

Choose the correct alternative

- If ϕ_1 , ϕ_2, ϕ_n are n solutions of $L(y) = y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_n(x) y = 0$ an interval I, then they are linearly independent if and only if
 - a) $W(\phi_1, \phi_2, \dots, \phi_n)(x) = 0 \ \forall x \in I$
 - b) $W(\phi_1, \phi_2 \dots \phi_n)(x) \neq 0 \quad \forall x \in I$
 - c) $W(\phi_1, \phi_2, \dots, \phi_n)(x) = \exp\left[-\int_{x_0}^x a_1(+)dt\right]$
 - d) $W(\phi_1, \phi_2 \dots \phi_n)(x) = \exp\left[\int_{x_0}^x a_1(+)dt\right]$
- One solution of the equation $y'' \frac{2}{x^2} y = 0$ (0 < x < ∞) is ... II.
 - a) $\phi(x) = x^2$
 - b) $\phi(x) = x$
 - c) $\phi(x) = e^x$
 - d) $\phi(x) = e^{-x}$
- The singular point of the equation III.

$$a_0(x)y^n + a_1(x)y^{(n-1)} + \dots + a_n(x)y$$
 is the point x_0 for which

- a) $a_0(x_0) \neq 0$
- b) $a_1(x_0) = 0$
- c) $a_0(x_0) = 0$
- $d) \ a_1(x_0) \neq 0$

IV.
$$\int_{-1}^{1} P_n^2(x) dx = \dots$$

- a) $\frac{3}{2n+1}$ b) $\frac{1}{2n+1}$
- c) $^{2}/_{2n+1}$
- d) $\frac{2}{2n-1}$
- The equation $x^2y'' + xy' + (x^2 a^2)y = 0$ is
 - a) Euler equation
 - b) Legendre equation
 - Nonhomogeneous equation
 - d) Bessel equation